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Abstract

A vertically-integrated nonlinear dispersive wave model in nonorthogonal curvilinear coordinate system is used for simulating linear and
nonlinear wave forces on bottom mounted circular and elliptical piles. The wave model is in terms of the contravariant velocities hence the
wall condition for arbitrarily shaped objects is satisfied accurately and easily. As basic test cases, computations of linear wave forces on vertical
cylinders of circular and elliptical cross sections are compared with the available analytical results. Cnoidal waves incident on circular and elliptical
cylinders are also simulated for different wave steepness ratios and wave shape parameter values to observe the effect of nonlinearity and wave
form. Comparisons of linear and nonlinear force coefficients and relevant discussion are presented in closing.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Reliable estimation of wave and current induced forces on
a sea structure constitutes probably the most important part
of a design project. Almost exclusive use of circular cylinders
as principal structural components necessarily places circular
piles in the center of most research work. Havelock [1] was
the first to formulate the linear diffraction theory for a vertical
circular cylinder in deep water conditions. Omer and Hall’s
work [2] may be viewed as the shallow water version of
Havelock’s work. Finally MacCamy and Fuchs [3] generalized
the theory for finite depth conditions. Due to obvious theoretical
difficulties, analytical treatments of different cross-sectional
shapes are rare. Goda and Yoshimura’s [4] formulation of
wave forces on a vertical pile of elliptic cross-section may be
addressed as a notable exception.

With the advent of computational facilities and numer-
ical techniques the problems beyond the power of analyt-
ical methods have begun receiving attention. Houston [5]
employed the finite-element technique for the combined
refraction–diffraction problem, Chau and Eatock Taylor [7] and
∗ Corresponding author.
E-mail addresses: barlas@itu.edu.tr (B. Barlas), sbeji@itu.edu.tr (S. Beji).

0141-1187/$ - see front matter c© 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.apor.2007.01.003
Isaacson and Cheung [6] studied the nonlinear wave diffraction
for a Stokes second-order wave field while Jiang and Wang [8]
used a generalized Boussinesq model for modelling the interac-
tions of cnoidal waves with a vertical cylinder. Later, Wang and
Ren [9] extended the work of Jiang and Wang [8] to an array
of cylinders. An accurate boundary element model for the cal-
culation of wave loads on multiple circular cylinders was given
by Zhu and Moule [10]. Stojek et al. [11] used Treffz-type fi-
nite elements for the computation of wave loads on a group of
vertical cylinders with rectangular cross-section. On the experi-
mental side, works of Kyte and Tørum [12] on vertical cylinders
placed on shoals, Huseby and Grue [13] on higher-harmonic
wave forces, and Morris-Thomas and Thiagarajan [14] on the
harmonic components of the run-up may be mentioned as re-
cent contributions to the subject.

The present work uses a vertically integrated nonlinear-
dispersive wave model expressed in curvilinear coordinates in
terms of the contravariant velocities. The wave equations in
generalized coordinates are numerically solved using finite-
difference approximations with staggered grids. Only half of
the circular or elliptical cylinder about the symmetry axis is
placed inside the physical domain so that the computational
domain becomes a perfect rectangle without any effort.
Multiple cylinders may also be considered if a dual-grid
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technique is adopted as in Wang and Ren [9]. Due to the
hyperbolic form of the velocity profile the evanescent modes
are not fully accounted for, but the Galerkin type formulation
of the original wave model indicates that these effects may
be compensated to some degree as vertical velocity profiles of
differing wave numbers are approximated quite satisfactorily
(see Nadaoka et al. [15] for details).

The outline of the paper is as follows. The next section
gives a brief description of the problem considered. Section 3
introduces the wave model and describes the numerical solution
technique for the problem in hand. In Section 4 linear wave
force computations for circular cylinders are performed first
and repeated for elliptical cylinders as benchmark tests to check
the accuracy of the model equations and the numerical scheme.
The computed dimensionless force maxima are plotted against
the theoretical values given by the linear theory of MacCamy
and Fuchs [3] for circular cylinders and by the analytical
results of Goda and Yoshimura [4] for elliptic cylinders. In
Section 5 the effects of nonlinearity are investigated using
cnoidal waves of two different steepness ratios and two different
elliptic modulus values. Again the computed dimensionless
nonlinear force maxima are compared with each other and
with the corresponding linear analytical values. The most
remarkable outcome of the nonlinear computations for both
circular and elliptical cross sections is that the effect of
nonlinearity is quite pronounced in the weak diffraction regime
whereas the opposite is the case in the strong diffraction
regime. Such a general trend appears to be supported by
experimental findings as well [16,17]. Furthermore, the wave
shape quantified by the elliptical modulus m for cnoidal
waves is observed to play an appreciable role too. Higher
elliptic modulus values which indicate narrower cnoidal wave
profiles produce higher dimensionless forces thus revealing
that nonlinear force magnitudes depend not only on the wave
steepness but also on the wave form.

2. Problem description

The present work considers the numerical computation of
horizontal wave forces acting on bottom-mounted piles of
circular and elliptical cross sections with diffraction effects.
Fig. 1 depicts the side view and plan view of the problem
with coordinate system used. The incident waves are introduced
from the left at x = 0 along the y-axis. The cylinder is placed at
0.6L , to the right of the mid-domain, to delay the contaminating
effects of the reflected waves traveling back to the incoming
boundary. The end of the domain x = L is designated as
an open boundary by implementing an appropriate radiation
condition.

The numerical solution is carried out using a boundary-
fitted model hence the corresponding computational domain is
perfectly rectangular. Fig. 2 shows a typical grid arrangement
for the physical domain in the (x, y) coordinates and
its counterpart in the computational domain in the (ξ, η)

coordinates. The boundary-fitted model is formulated for
nonorthogonal grids, hence no special care is needed for
generating orthogonal grids. While the grid sizes in the physical
Fig. 1. Side view and plan view of the problem for a circular cylinder.

Fig. 2. A typical grid arrangement in the physical domain (x, y) and its
counterpart in the computational domain (ξ, η) for a circular cylinder.

domain vary depending on the location, the grid sizes in
the computational domain are taken as unity in both ξ - and
η-directions for numerical efficiency. Due to the symmetry of
the problem only half of the domain is discretized.

3. Wave model, boundary conditions and numerical
approach

3.1. Boundary-fitted wave model

The wave model used in this work is the one-component
form of the fully-dispersive nonlinear model of Nadaoka
et al. [15] as expressed in boundary-fitted coordinates by Beji
and Barlas [18]. The model is operational for both shallow
and deep water waves hence it can reproduce the cnoidal and
the second-order Stokes waves equally well, besides simulating
narrow banded nonlinear random waves over arbitrary depths.
In the curvilinear coordinate system (ξ, η) the continuity
equation and ξ - and η-components of the momentum equation
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are given as [18]
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where g is the gravitational acceleration, ζ is free surface
elevation, U and V are the contravariant components of the
horizontal velocity vector at z = 0 with U∗

= U/J and
V ∗

= V/J . J is the Jacobian and ξx , ξy, ηx , ηy are the metrics
of the transformation. n = Cg/C p with C p and Cg denoting
respectively the phase and group velocities computed according
to linear theory for a specified wave frequency ω and a given
local depth h. Subscripts indicate partial differentiation with
respect to the indicated variable with subscript τ denoting time
in the curvilinear coordinates.

3.2. Boundary conditions

At any given point the contravariant velocities (U, V ) are in
the (ξ, η) directions; therefore, even for irregular geometries,
the wall condition may be specified quite simply by requiring
the contravariant velocity component normal to the wall
boundary vanish.

At the incoming boundary the form of the incident waves
are specified as either sinusoidal or cnoidal, the sinusoidal form
being used for linear simulations. For sinusoidal waves the
corresponding linear velocity U is obtained from the linearized
continuity equation as U = ζC/(C2

p/g) with C being the phase
velocity of the incident wave. The phase velocity C p used in
the model is always taken equal to C for accurate simulations.
The cnoidal wave form is taken from the classical theory of
Korteweg and de Vries [19] as described in [20]. The nonlinear
horizontal velocity in the ξ -direction is obtained from the full
form of the continuity equation as U = ζC/(C2

p/g + ζ ) with
C denoting the cnoidal wave celerity.

In principle the wave equations may be used on the open
boundaries too. However, the discretization must be one-sided
to prevent overlapping outside the intended computational
region. Also, typically tri-diagonal form of the unknown
velocity matrix becomes modified. Despite these disadvantages
use of wave equations on the open boundaries improves the
radiation of the nonlinear waves significantly as demonstrated
in [21]. In curvilinear coordinates the momentum equations
necessarily contain more terms than their cartesian forms do,
therefore use of the boundary-fitted equations on the open
boundaries becomes quite a complicated application. For this
reason, the usual approach is adopted here and Sommerfeld’s
classical radiation condition is employed. For directional
waves higher-order boundary conditions, such as suggested by
Engquist and Majda [22] may be used for better absorption
of complicated wave patterns. However, even for directional
waves, Sommerfeld’s condition in boundary-fitted coordinates
is found to give quite acceptable results. For waves moving in
the positive ξ - direction Sommerfeld’s equation in curvilinear
coordinates is given by [18](
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If the physical domain is rectangular, ξx = 1, ξy = 0, ηx =

0, and ηy = 1, the above equation reduces to ut + Cux = 0,
which is the usual form.

3.3. Numerical approach

Since the computational domain is always rectangular, the
numerical solution of the transformed wave equations may be
carried out conveniently using finite-difference approximations.
Discretization of the computational domain follows the
Arakawa C-grid scheme [23]. The choice of the Arakawa
C-gird is not arbitrary, the final selection has been made
from among three different grid schemes which were tested
previously in [18].

The time derivatives are centred at the mid-time level t +

1t/2, t being the current time and 1t the time step. The
wave propagation direction is taken along the positive ξ -axis;
therefore, ξ -momentum equation is solved first to obtain U∗

for the new time level t + 1t , assuming the new time level
values of ζ and V ∗ known. Then, η-momentum equation is
solved for V ∗ using U∗ as computed from the previous step.
Finally, the surface displacement is obtained from a semi-
explicit discretization of the continuity equation. Since all
these computations involve certain approximations, an iterative
procedure is necessary. Through numerical experiments it
has been ascertained that five iterations are sufficient to
obtain reliable results. This number was determined by
checking the values of the variables at selected locations
between successive iterations until the difference between two
consecutive iterations became less than a specified small value
10−5. Complete details of the numerical approach can be found
in Beji and Barlas [18].

4. Linear wave forces

Simulations of linear wave forces for both circular and
elliptical cylinders provide quantitative estimates for the
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accuracy of the model predictions through comparisons with
the analytical solutions which are available for these particular
cross-sectional forms.

4.1. Circular cross-section

The analytical solution of the linearized diffraction problem
for a circular cylinder at arbitrary water depths was given by
MacCamy and Fuchs [3]. Accordingly, the nondimensional
maximum horizontal force F̄max is

F̄max =
Fmax

ρgh Hr(tanh kh/kh)
= 2

[J ′2
1(kr) + Y ′2

1(kr)]−1/2

kr
,

(5)

where ρ is the water density, h the water depth, k the wave
number, H the incident wave height, r the cylinder radius, and
J ′

1(kr) and Y ′

1(kr) are derivatives of the Bessel’s functions of
the first and second kind of the order one.

As schematized in Fig. 2 numerical computations are
performed for half of the physical domain cut through the
symmetry line. The incident boundary condition is specified
as a simple sinusoidal wave while the outgoing boundary is
specified according to Eq. (4) as a nonreflecting boundary.
The wall condition is imposed along the upper wall and the
symmetry line.

For wave simulation problems it is customary to use a fixed
resolution in the wave propagation direction as a fraction of
the incident wavelength. However, the present problem has
two independent length scales: the incident wavelength and
the cylinder radius. By changing the magnitude of the one
relative to the other, different kr values are simulated; therefore,
it is not possible to fix the resolution in the x-direction as
a definite fraction of the incident wavelength. If kr is small,
the resolution, which is sufficient for the incident wave, is
usually insufficient for resolving the cylinder. Likewise, if kr
is large, the resolution which is satisfactory for the cylinder is
unsatisfactory for the wavelength. Only for the specific value of
kr = π for which both length scales become identical 2r = λ,
the resolution of the two scales becomes identical (a definite
resolution results in identical resolutions for both the wave and
the cylinder).

Due to the conflicting aspects of the problem, especially
for small and large kr values, it is necessary to adopt a
comprising approach to reconcile the different resolutions.
First, for simplicity, the water depth is taken to be h = 1 m
and the wavelength λ = 2π m for all simulations. The
corresponding incident wave period is thus fixed just like the
incident wavelength and water depth and obtained from the
dispersion relation as T = 2π/

√
g tanh(1) ' 2.3 s. Since kr is

the principal non-dimensional parameter indicating the extent
of diffraction, a range of kr = 0.4–2.4 values with increments
of 0.2 is used to determine the cylinder radius which is varied
again between r = 0.4 and 2.4 since k = 1 for λ = 2π . Then,
a typical physical domain length L = 10λ = 20π and width
W = 10r are defined. The width of the domain is especially
kept wide enough to avoid the interference of the possible
reflections from the wall. The resolution in the x-direction is
Fig. 3. Perspective view of a fully developed wave field at t = 35T in presence
of circular cylinder for kr = 2.0.

Fig. 4. Computed nondimensional linear wave force on circular cylinder for a
duration of 15 periods between t = 20T and t = 35T for kr = 2.0.

defined as a fraction of the incident wavelength but it is not
fixed and varied between 1x = λ/25 − λ/80 depending on
the case, the resolution being lower for large kr and higher for
small kr . The resolution in the y-direction is taken depend on
1x as 1y = 1.51x . Finally, the time step 1t is determined
from the condition that the wave Courant number in the
x-direction C1t/1x be unity. Such a condition is not necessary
but presumably gives more accurate results.

Sensitivity to the grid size is investigated systematically by
performing three different computations for each case. After
performing the computation for the typical domain length and
grid size given above, the grid size is first increased and then
decreased by 25% and the computations are repeated. Finally,
all three results are averaged to get the final force magnitude for
each kr . The minimum and maximum of the deviations from
the mean are found to be respectively 6.0% for kr = 0.4 and
7.4% for kr = 2.4.

Fig. 3 shows a perspective view of a fully developed wave
field in presence of the cylinder for kr = 2.0 after 35 wave
periods elapsed from the start. Fig. 4 depicts a sample of the
computed nondimensional force for a duration of 15 periods
again for kr = 2.0. The wave force on the pile is computed
from the numerical integration of the first integral (linear part)
given by Eq. (A.8) in the Appendix.

In Fig. 5 numerically computed nondimensional force
maxima are compared with the analytical solution given by
Eq. (5) for 11 different values of kr = 0.4–2.4. Overall the
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Fig. 5. Nondimensional force maxima on circular cylinder as predicted by
linear theory (solid line) and computed using the wave model (full circles) for
a range of kr values.

Fig. 6. Nondimensional force maxima on elliptical cylinder as predicted by the
linear theoretical solution of Goda and Yoshimura (solid line) and computed
using the wave model (full circles) for an elliptical cylinder with b/a = 0.15.

agreement is quite satisfactory with a maximum difference of
2.7% for kr = 1.8.

4.2. Elliptic cross-section

Goda and Yoshimura [4] analytically solved the problem
of linear wave scattering by a vertical elliptical cylinder
and calculated the wave forces acting on the cylinder. Their
solution, which is expressed in terms of Mathieu functions and
their derivatives, is valid for arbitrary short to long axis ratios
and arbitrary wave directions. Reproduction of the complete
solution is quite complicated therefore a sample case presented
in their work is selected for comparisons. The simulated case is
for b/a = 0.15 where a is the long and b is the short axis of the
elliptical cross-section. The ellipse is aligned such that the long
axis lies in the direction of wave propagation.

Numerical computations quite similar to those for the
circular cylinder are performed again for 11 different values of
kb = 0.4–2.4. Naturally, b is now used as the length scale of
diffraction effect in accord with Goda and Yoshimura [4]. The
grid resolutions are arranged likewise; however, instead of the
radius r , the long axis a is used for the x-direction quantities
and the short axis b is used for the y-direction quantities. The
wave force is nondimensionalized by using b in place of r .
The resolution in the y-direction is 1y = 1.51x as used for
the circular cylinder. Fig. 6 shows the analytical solution given
in [4] against the numerical results which are the mean values
calculated from computations for three different resolutions as
detailed in Section 4.1 for each kb. The numerically computed
results are in good agreement with the analytical solution for
the entire range; the maximum difference is 4.9% for kb =

2.0. Thus, it may be safe to conclude that at least for linear
simulations the present model gives quite reliable estimates of
the wave forces.

5. Cnoidal wave forces

Korteweg and de Vries [19] used the word cnoidal for
nonlinear periodic waves of permanent shape in shallow water.
In order to investigate the effects of nonlinearity on the form
and magnitude of the wave forces acting on vertical cylinders
the cnoidal waves are now used as incident waves.

According to the cnoidal theory only two parameters may
be selected freely; the rest of the physical wave quantities are
determined in terms of these two parameters and the complete
elliptic integrals of the first kind K (m) and the second kind
E(m), which depend on the elliptic modulus m (see for instance
Abramowitz and Stegun [24], p.590).

The presentation plan requires the selection of a definite
wave steepness ε = H/h to measure the nonlinearity and
an elliptic modulus m to quantify the wave form. In order to
carry out this plan, two wave steepness values ε = 0.1, 0.3
and two different elliptical modulus values m = 0.90, 0.95
are selected first. To avoid extremely high wave heights due
to reflection in front of the pile the wave steepness values
are kept within moderate limits. The water depth is fixed at
h = 0.25 m, which allows the long wave condition to be
satisfied for the wavelengths computed according to the formula
λ = 4hK (m)

√
m/3ε as dictated by the classical cnoidal theory.

The principal nondimensional parameter kr is varied between
0.4 and 2.4 as in the linear computations. For each case the
cylinder radius is computed from r = kr(λ/2π).

5.1. Circular cross-section

Cnoidal wave forces on circular piles are simulated first. The
spatial and time resolutions used in the simulations basically
follow their linear counterparts expect for the isolated cases
with numerical instabilities due to nonlinearities. In such cases
the resolutions are altered to avoid the numerical instabilities.

Fig. 7 shows a perspective view of a fully developed cnoidal
wave field with ε = 0.3 and m = 0.90 in presence of the
circular cylinder for kr = 1.0. It may be compared with the
linear case shown previously in Fig. 3. Likewise, the cnoidal
counterpart of Fig. 4 is given in Fig. 8 again for ε = 0.3,
m = 0.90, and kr = 1.0. When compared with Fig. 4
the functional change of the force due to the presence of the
bound harmonic components, which create an asymmetrical
and skewed appearance, is quite pronounced. The cnoidal wave
force on the pile is computed from the numerical integrations
of the integrals given in (A.8).

In Fig. 9 numerically obtained nondimensional force
maxima for ε = 0.1 and for two different elliptical modulus
values m = 0.90 and m = 0.95 are plotted. The linear solution
is also included for reference. The results of a corresponding
simulation for ε = 0.3 are presented in Fig. 10. Both figures
obviously indicate that the effect of nonlinearity increases with
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Fig. 7. Perspective view of a fully developed cnoidal wave field with ε = 0.3,
m = 0.90 at t = 35T in presence of circular cylinder for kr = 1.0.

Fig. 8. Computed nondimensional cnoidal wave force on circular cylinder for
a duration of 15 periods between t = 20T and t = 35T for ε = 0.3, m = 0.90,
and kr = 1.0.

Fig. 9. Nondimensional cnoidal force maxima on circular cylinder for m =

0.90 (full triangles) and m = 0.95 (full circles) both for ε = 0.1. Linear theory
(solid line) is also plotted for reference.

decreasing diffraction effect. Such a trend is also supported
by the computational results of Jiang and Wang [8] who
simulated cnoidal wave forces using a Boussinesq model. It is
to be noted that their nondimensionalization differs from the
present work and therefore direct comparisons are not possible.
Measurements reported in Kriebel [16], and in a different
context the Stokes wave force simulations of Isaacson and
Cheung [6] reveal parallel trends.

Besides the obvious dependency of nonlinear effect on kr ,
the shape of the cnoidal wave form, as quantified by the elliptic
modulus m, appears to affect the force magnitude. Larger m
values, which cause the wave form to become narrower, result
in larger nondimensional force values. The reason may be
related to the greater spatial gradients of orbital velocities,
which in turn dictate the dynamic pressure. Being one of the
nondimensional parameters defining cnoidal wave form, the
elliptic modulus would naturally be expected to play a role
in computations, though its significance may be argued. The
Fig. 10. Nondimensional cnoidal force maxima on circular cylinder for m =

0.90 (full triangles) and m = 0.95 (full circles) both for ε = 0.3. Linear theory
(solid line) is also plotted for reference.

Fig. 11. Perspective view of a fully developed cnoidal wave field at t = 44T
in presence of elliptical cylinder (b/a = 0.15) for kb = 2.0.

Fig. 12. Computed nondimensional cnoidal wave force on elliptical cylinder
for a duration of 10 periods between t = 34T and t = 44T for ε = 0.3,
m = 0.90, and kb = 2.0.

computations performed in this work shows that differences
in m values cause appreciable variations in force maxima.
Changes in ε seem somewhat less effective in changing the
nondimensional force maxima.

5.2. Elliptic cross-section

Cnoidal wave forces on elliptical piles are now simulated.
The simulations follow the pattern established for the circular
piles. Fig. 11 shows a perspective view of a cnoidal wave field
with an elliptical cylinder for kb = 2.0 after 44 wave periods
elapsed from the start. Fig. 12 depicts the nondimensional force
as a function of time for ε = 0.3 and m = 0.90. The thin form
of the elliptical cylinder produces a wave force form which is
considerably different from the form obtained in the case of
circular cylinder.

In Fig. 13 computed nondimensional force values for ε =

0.1 and for two different elliptical modulus values m = 0.90



B. Barlas, S. Beji / Applied Ocean Research 28 (2006) 267–274 273
Fig. 13. Nondimensional cnoidal force maxima on elliptical cylinder for m =

0.90 (full triangles) and m = 0.95 (full circles) both for ε = 0.1. Linear theory
(solid line) is also plotted for reference.

Fig. 14. Nondimensional cnoidal force maxima on elliptical cylinder for m =

0.90 (full triangles) and m = 0.95 (full circles) both for ε = 0.3. Linear theory
(solid line) is also plotted for reference.

and m = 0.95 are plotted along with the linear solution. The
results of a corresponding simulation for ε = 0.3 are presented
in Fig. 14. Both figures show that the general conclusions drawn
from Figs. 9 and 10 in Section 5.1 equally apply to the elliptical
cylinders subject to nonlinear cnoidal wave loading.

6. Concluding remarks

Linear and cnoidal wave forces on vertical cylinders of
circular and elliptical cross sections are numerically computed
using a vertically integrated wave model in curvilinear
coordinates. Computational results for linear waves compare
well with the corresponding analytical values for both circular
and elliptical cylinders. Simulations with cnoidal waves are
performed for two different wave steepness ratios and two
different elliptical modulus values to observe the effects of
different nonlinearity and modulus values. While the nonlinear
wave force maxima are appreciably larger than their linear
counterparts in the low diffraction regime the results for the
strong diffraction regime become almost identical with those of
the linear theory. The change in nonlinearity does not produce
dramatic differences in nondimensional force maxima while
the effect of cnoidal wave form, quantified by the elliptical
modulus m, is found to exert appreciable influence on the
magnitude of nondimensional force. Overall the most striking
feature of the simulations appear to be the strong increase in
the nondimensional wave force for cnoidal waves for small kr
values.
Appendix. Computing the pressure force

Details of computing the pressure force for the wave model
used in this work are given below. The vertical component
of the momentum equation with the use of the irrotationality
condition may be written as:

−
1
ρ

pz = w̃t +
1
2
(ũ2

+ ṽ2
+ w̃2)z + g, (A.1)

where ũ, ṽ, w̃ are the Cartesian velocity components in three
dimensions. (A.1) may be integrated vertically in z to get

−
1
ρ

p =

∫
w̃t dz +

1
2
(ũ2

+ ṽ2
+ w̃2) + gz. (A.2)

The wave model used in this work assumes (see Nadaoka et al.
[15])

ũ =
cosh k(h + z)

cosh kh
u, ṽ =

cosh k(h + z)

cosh kh
v,

w̃ = −
sinh k(h + z)

k cosh kh
(ux + vy), (A.3)

in which u(x, y), v(x, y), w(x, y) are the velocity components
at the still water level. Using the expressions given by (A.3) in
(A.2) results in

−
1
ρ

p = −
cosh k(h + z)

k2 cosh kh
(ux + vy)t

+
1

2 cosh2 kh
(u2

+ v2) + gz (A.4)

where use has been made of w2
= −sinh2 k(h + z)(u2

+

v2)/ cosh2 kh as obtained for periodic waves (Beji and
Nadaoka, [25]). Integrating (A.4) from the bottom z = −h to
the surface z = ζ gives

1
ρ

∫ ζ

−h
p dz =

sinh k(h + ζ )

k3 cosh kh
(ux + vy)t

−
(h + ζ )

2 cosh2 kh
(u2

+ v2) +
1
2

g(h2
− ζ 2). (A.5)

The total pressure force acting on a circular cylinder in the
positive x-direction is obtained by integrating around the
cylinder and taking the appropriate force component:

Fx

ρ
=

1
ρ

∫ ζ

−h

∫ 2π

0
pr cos θdθ dz

=
r sinh k(h + ζ )

k3 cosh kh

∫ 2π

0
(ux + vy)t cos θdθ

−
r(h + ζ )

2 cosh2 kh

∫ 2π

0
(u2

+ v2) cos θdθ. (A.6)

The hydrostatic pressure when integrated around the cylinder
brings no contribution for being equal in all directions. The
above equation may be expressed in terms of the contravariant
velocities as:
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Fx

ρ
=

r sinh k(h + ζ )

k3 cosh kh

∫ 2π

0
J

(
U∗

ξ + V ∗
η

)
τ

cos θdθ

−
r(h + ζ )

2 cosh2 kh

∫ 2π

0

(
η2

x + η2
y

)
U∗2 cos θdθ. (A.7)

where U∗
= U/J and V ∗

= V/J as indicated before. Note
that the contravariant component perpendicular to the wall is
zero V = 0. Letting (h + ζ ) ' h and non-dimensionalizing the
force gives:

F̄x =
Fx

ρgh Hr(tanh kh/kh)

=
1

gk2 H

∫ 2π

0
J

(
U∗

ξ + V ∗
η

)
τ

cos θdθ

−
kh

gH sinh 2kh

∫ 2π

0

(
η2

x + η2
y

)
U∗2 cos θdθ. (A.8)

In linear computations the nonlinear second integral is
neglected completely.
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