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Boussinesq equations with improved dispersion characteristics are employed to simulate the generation

and propagation of waves due to a moving pressure field. The equations with surface pressure terms are

discretized in an unconventional way so that the numerical scheme could be run in three different

modes: the non-dispersive long wave mode, the classical and the improved Boussinesq mode. For a

Gaussian shaped moving pressure field, the analytical solution obtained from the linearized 1-D long

wave equations is used for comparisons with the numerical solutions obtained from three different

modes of the scheme. A moving hemispherical pressure field and a slender ship-like pressure field are

employed for 2-D numerical simulations for a range of Froude numbers. Numerically obtained wedge

angles are compared with the values given by the analytical formulas of Havelock. Nonlinear simulations

are also performed for visual comparisons with their linear counterparts.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Ocean surface waves, or simply water waves, are mainly
generated by wind. However, besides wind generated offshore and
near shore waves, waves generated by moving bodies are always of
interest. In particular, simulation of wave motions due to ship-like
surface vessels in mildly varying bathymetry is the subject matter
of the present work. Further extensions to study the transformation
of ship wave spectra in strongly varying bottom topography as in
Belibassakis (2003), and to examine the wave interactions with
other structures are also possible.

The earliest depth-averaged wave equation that included weakly
dispersive and nonlinear effects was derived by Boussinesq (1872),
in which the non-hydrostatic pressure was approximated and
included in the equation. The original derivation was for constant
depth only; later, Mei and Meháute (1966) and shortly afterwards
Peregrine (1967))derived Boussinesq equations for variable depth.
While Mei and Meháute chose the velocity at the bottom as the
dependent variable, Peregrine used the depth-averaged velocity.
Due to the wide popularity of the equations derived by Peregrine,
these equations are often referred to as the standard Boussinesq
equations for variable depth in coastal engineering community.

The standard Boussinesq equations are valid only for relatively
small kh and H=h values where kh and H=h represents the para-
meters indicating the relative depth (dispersion) and the wave
steepness (nonlinearity), respectively. Witting (1984) made the
first attempt to improve the dispersion characteristics of a 1-D
ll rights reserved.
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Boussinesq-like model. Madsen et al. (1991) and Madsen and
Sørensen (1992) included higher order terms with adjustable
coefficients into the standard Boussinesq equations for constant
and variable water depth, respectively. Beji and Nadaoka (1996)
gave an alternative derivation of Madsen and Sørensen (1992)
Boussinesq equations with Padé ð2,2Þ.

Liu and Wu (2004) presented a highly nonlinear Boussines
model with specific applications to ship waves generated by a
moving pressure distribution in a rectangular and trapezoidal
channel. Torsvik et al. (2009b) made a numerical investigation on
waves generated by a pressure disturbance moving at constant
speed in a channel with a variable cross-channel depth profile by
using Lynett et al. (2002) and Liu and Wu’s (2004) COULWAVE
long wave model. Torsvik et al. (2009a) also applied their model
to simulate nonlinear waves generated by fast ferries. Nascimento
et al. (2009) adapted Wei and Kirby’s (1995) FUNWAVE in order
to include a specified moving pressure at the free surface. All
these works use the same type of cosine function to represent the
moving surface object. In this paper, besides a relatively simple
hemispherical shape, a paraboloid-like function is used to model a
moving ship in a more refined form.

The numerical model with moving pressure field is first tested
for 1-D case. The analytical solutions as obtained from the
linearized 1-D long wave equations for a Gaussian-shaped moving
surface pressure are compared with the numerical results of the
scheme.

For 2-D case the symmetrical accuracy of the model is
ascertained first by performing a ring test. Afterwards, waves
generated by a moving hemispherical pressure field are simulated.
Then, the numerical simulations performed for the slender shiplike
surface pressure distribution are used for comparing the wedge
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angles with their analytical counterparts as given by Havelock
(1908) according to a linearized theory.

Finally the effects of nonlinearity on the generated wave patterns
are examined for a selected case by running the numerical scheme
in linearized mode and in the nonlinear mode, separately.
Fig. 1. Location of dependent in Arakawa staggered C-grid system.
2. Boussinesq equations with improved dispersion
characteristics

Dispersion relation of Peregrine’s (1967) model is an accurate
approximation to Stokes first-order wave theory for relatively
small values of the dispersion parameter m. Madsen et al. (1991)
improved the dispersion characteristics of this system by adding
extra dispersive terms to the momentum equations as expressed
in terms of depth-integrated velocities. The form of the dispersion
relation is determined by specifying a free parameter according
to a preferred approach, which may be an error minimization
procedure or matching with the Padé expansion of linear theory
dispersion relation. Compared to the classical Boussinesq equa-
tions the improved equations contain extra dispersive terms,
which enables them to simulate relatively shorter waves with
better accuracy. Later, this procedure has been extended to the
case of variable depth by Madsen and Sørensen (1992). Alterna-
tively, Beji and Nadaoka (1996) introduced a slightly different
method to improve the dispersion characteristics by a simple
algebraic manipulation of Peregrine’s work for variable depth.

In this work, Boussinesq equations as derived by Beji and
Nadaoka (1996) are used with the addition of a pressure gradient
to the momentum equation:
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where u is the vertically averaged or mean horizontal velocity
vector with components ðu,vÞ, and Z is the free surface displace-
ment as measured from the still water level. g is the gravitational
acceleration and h¼ hðx,yÞ is the spatially varying local water
depth. Subscript t denotes partial differentiation with respect to
time and r is the two-dimensional horizontal gradient operator
with components ð@=@x,@=@yÞ. b is a scalar set to b¼ 1=5 according
to the second order Padé expansion of the linear theory dispersion
relation. Note that b¼ 0 corresponds to Peregrine’s original equa-
tions. When b¼ 1=5 the model may propagate relatively shorter
waves (h=l¼ 1) with acceptable errors in celerity.
3. Numerical algorithm

3.1. Discretization of governing equations

The governing equations given by Eqs. (1) and (2) are discretized
on an Arakawa staggered C-grid system as shown in Fig. 1.

In the discretization process the continuity equation is embedded
into the momentum equation in a manner first used by O’Brien and
Hurlburt (1972) for the solution of two-layer shallow water equa-
tions. Such an arrangement enables running the long wave mode in
the implicit formulation of the Boussinesq mode. Accordingly, the
continuity equation is discretized as
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where i and j denotes the spatial time steps in the x- and y-directions
while k indicates the time level. Multiplying both sides by Dt and
differentiating with respect to x gives

@Z
@x

� �kþ1

i,j

¼
@Z
@x

� �k

i,j

�
1

2
h

@2u

@x2

� �kþ1

þ
@2u

@x2

� �k
" #

i�1=2,j

Dt

�2hx
@u

@x

� �kþ1=2

i�1=2,j

Dt�hy
@v

@x

� �kþ1=2

i,j�1=2

Dt

�hx
@v

@y

� �kþ1=2

i,j�1=2

�h
@2v

@x@y

� �kþ1=2

i,j�1=2

Dt

�
@2

@x2
ðZuÞkþ1=2

i�1=2,jDt�
@2

@x@y
ðZvÞkþ1=2

i,j�1=2Dt ð4Þ

Likewise, multiplying Eq. (3) by Dt and differentiating with respect
to y gives
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Eqs. (4) and (5) are to be used in the discretized forms of the
x- and y-components of the momentum equation, respectively.
The x-component of the momentum equation is discretized as
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where the terms given in undiscretized form are to be discretized
according to the Arakawa C-grid system at time level kþ1=2.
Substituting ð@Z=@xÞkþ1

i,j as given in Eq. (4) into the above equation,
multiplying by Dt and rearranging gives
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The y-momentum equation is discretized likewise
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Fig. 2. Ring test for 2-D Boussinesq equations with b¼ 1=5 at t¼0.25 (a), t¼0.5 (b
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Note that all the time derivatives are centered at time level kþ1=2
as the spatial derivatives are evaluated at kþ1=2 by averaging the
derivatives at time levels k and kþ1. Since all the spatial deriva-
tives are also centered, the scheme is fully centered and accurate to
the second order in both time and space. The numerical solution
proceeds as follows. First, the provisional values of Z are computed
from the continuity equation (3) using the old time velocity values.
The discretized x- and y-momentum equations (7) and (8) yield a
tridiagonal matrix system for the velocities u and v at new time
level. For the x-sweep, the new time level values vkþ1s are treated
as known by using the last computed values so that ukþ1s are
the only unknowns. The resulting matrix system is solved by
Thomas Algorithm. Similarly for the y-sweep, the vkþ1s are the
only unknowns to be solved. Finally the continuity equation (3) is
used again to obtain the improved values of Z using the newly
computed ukþ1 and vkþ1 values. At each time step the procedure is
iterated thrice, which is found to be sufficient for reliable results.
For a more precise approach the successive values of the variables
may be compared according to a convergence criterium. Never-
theless the numerical experiments do not justify the additional
computational load as no appreciable improvement in the results
is observed with increasing iteration number.
) and t¼1.0 s (c). Upper row: perspective views, lower row: contour graphics.
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3.2. Boundary conditions

All the boundaries are specified as the radiation type boundary,
across which the waves leave the domain without any hinderance.
For one dimensional waves Sommerfeld radiation condition reads
for u and v, respectively:

utþcxux ¼ 0

vtþcyvy ¼ 0 ð9Þ

where cx and cy denote the x- and y-components of the phase
celerity c. Numerical determination of cx and cy at every time step
requires the computation of the incident wave angle hence is not
quite reliable. Therefore, as is usually done, c is used for both
directions and c is computed according to the dispersion relation-
ship of the improved Boussinesq equations for the local water
depth. Higher-order boundary conditions as given by Engquist and
Majda (1977) may be used; however, the simpler Sommerfeld
radiation condition with constant c for both directions is found to
be acceptable enough as observed in the ring test.
4. Test cases for verification of numerical scheme

4.1. Ring test

The performance of the non-reflective boundaries is checked by
a ring test which reveals the symmetrical accuracy of the model.
The ring tests for all the modes (long wave, classical Boussinesq
and Boussinesq with Padé (2,2)) of the numerical scheme are
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Fig. 3. Comparison of numerical and analytical solutions of linear shallow water wave equ

column) and t¼100 s (right column): (a) t¼50 s, v¼0 m/s; (b) t¼100 s, v¼0 m/s; (c) t¼5
performed; however, only the test for the improved Boussinesq
model is shown here. The computational domain is taken as
2�2 m with h¼1 m water depth. The region is discretized by 50
points along both x- and y-axes. Time step Dt¼ 1=40 s and the
simulations are shown for t¼0.25 s, 0.5 s and 1.0 s in Fig. 2. The
contour plots show nearly perfect symmetry.

4.2. A 1-D moving pressure test

For testing the accuracy of numerically simulated waves due to a
moving pressure field, a 1-D case with known analytical solution is
considered. The analytical solution for the 1-D linearized long wave
equations is recapitulated first and then comparisons with the
numerical solutions are given. The linearized long wave equations
for constant depth may be written as

Ztþhux ¼ 0

utþgZx ¼�
1

r px ð10Þ

where p is the applied surface pressure. In absence of any forcing
function (p¼0) the above equations have the free wave solutions
Z1 ¼ a1f ðx�ctÞ, Z2 ¼ a2f ðxþctÞ and u1 ¼ ðc=hÞa1f ðx�ctÞ, u2 ¼�ðc=hÞ

a2f ðxþctÞ where f ðx,tÞ is an arbitrary function, a1 and a2 are
arbitrary constants and c¼

ffiffiffiffiffiffi
gh

p
is the shallow water wave celerity.

If the pressure field is defined as p¼ p0f ðx�vtÞ with v being
the speed of the pressure field in the positive x-direction then the
forced system has a solution of the form Z3 ¼ a3f ðx�vtÞ and
u3 ¼ b3f ðx�vtÞ with a3 and b3 to be determined from the wave
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ations for a moving pressure with v¼0 m/s, v¼10 m/s and v¼18 m/s at t¼50 s (left

0 s, v¼10 m/s; (d) t¼100 s, v¼10 m/s; (e) t¼50 s, v¼18 m/s; (f) t¼100 s, v¼18 m/s.



Fig. 5. Definition of the pressure distribution pðx,yÞ ¼ p0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ðx2þy2Þ=R2

q
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equations. Substituting Z3, u3 and p into Eq. (10) gives a3 ¼�hp0=

rðc2�v2Þ and b3 ¼�vp0=rðc2�v2Þ. Finally, applying the initial con-
dition that the total displacement and velocity must separately be
zero at t¼0:

Z1þZ2þZ3 ¼ 0

u1þu2þu3 ¼ 0 ð11Þ

gives for a1 ¼ ðcþvÞhp0=2rcðc2�v2Þ and a2 ¼ ðc�vÞhp0=2rcðc2�v2Þ.
The final solution is then

Z¼ hp0

2rcðc2�v2Þ
½ðcþvÞf ðx�ctÞþðc�vÞf ðxþctÞ�2cf ðx�vtÞ� ð12Þ

and

u¼
p0

2rðc2�v2Þ
½ðcþvÞf ðx�ctÞ�ðc�vÞf ðxþctÞ�2vf ðx�vtÞ� ð13Þ

Note that when t¼0 both Z and u become identically zero. For the
test case the pressure function f is selected as f ðwÞ ¼ exp½�ðw=250Þ2�
where w¼ x�vt. p0 ¼�5000 Pa, r¼ 1000 kg=m3, g¼9.81 m/s2 and
the water depth is h¼20 m so that c¼

ffiffiffiffiffiffi
gh

p
¼ 14 m=s. The length of

the computational domain is 20 000 m, grid size 20 m and time step
1 s. The initial location of the pressure field is in the middle of the
computational domain, x0 ¼ 10 000 m. Fig. 3 compares the analy-
tical solution with the numerical solution of long wave equations for
v¼0, 10, and 18 m/s cases, which corresponds to the depth-based
Froude numbers Fr¼ v=c¼ v=

ffiffiffiffiffiffi
gh

p
¼ 0:0, 0.7, and 1.3 approximately.

The same comparisons using the Boussinesq equations with b¼ 1=5
instead of the long wave equations are made in Fig. 4. As seen from
the figures numerical simulations in both cases agree well with the
analytical solution derived from the linearized long wave equations.
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Fig. 4. Comparison of analytical solution with linear shallow water waves and 1-D Bou

v¼18 m/s for b¼ 1=5 at t¼50 s (left column) and t¼100 s (right column): (a) t¼50 s

(e) t¼50 s, v¼18 m/s; (f) t¼100 s, v¼18 m/s.
Having thus established a certain degree of confidence in the
numerical scheme regarding the simulation of surface-forced waves
the scheme is now used for 2-D simulations.
5. 2-D numerical simulations

2-D simulations of waves generated by moving pressure fields
are performed for two different surface pressure functions; a
hemispherical pressure field and a slender-body type pressure field.
9000 10000 11000 12000

-0.2

0.0

0.2

0.4

η

Numerical
Analytical

9000 10000 11000 12000

-0.5

0.0

0.5

η

Numerical
Analytical

9000 10000 11000 12000

-0.5

0.0

0.5

η
Numerical

Analytical

�

�

�

ssinesq solution generated by a moving pressure with v¼ 0 m=s, v¼ 10 m=s and

, v¼0 m/s; (b) t¼100 s, v¼0 m/s; (c) t¼50 s, v¼10 m/s; (d) t¼100 s, v¼10 m/s;
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5.1. Hemispherical pressure forcing

A hemispherical pressure field of the form:

pðx,yÞ ¼ p0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ðx2þy2Þ=R2

q
ð14Þ

is used for the first simulation. Here p0 is the peak value of the
pressure distribution, which is attained at x¼0, y¼0, and R is the
radius of the hemisphere. Fig. 5 shows the hemispherical field.

In the simulation R is taken as 40 m, p0 ¼ 300 Pa and the water

depth h¼10 m which gives c¼
ffiffiffiffiffiffi
gh

p
¼ 10 m=s. The simulation region

is 600 m�300 m with Dx¼Dy¼ 2 m. Time step is taken as Dt¼

0:2 s. In the x-momentum equation px ¼�xp0=R2
½1�ðx2þy2Þ=R2

�1=2

and in the y-momentum py ¼�yp0=R2
½1� ðx2þy2Þ=R2

�1=2. Fig. 6
Fig. 6. Wave contours of a moving hemisphere at different time steps using

Boussinesq model with b¼ 1=5 for Fr¼0.99: (a) t¼10 s, Fr¼0.99; (b) t¼20 s,

Fr¼0.99; (c) t¼48 s, Fr¼0.99.
shows the contour plots of the simulated wave field at t¼10 s, 20 s

and 48 s for the depth-based Froude number Fr¼ v=c¼ v=
ffiffiffiffiffiffi
gh

p
¼

0:99, which corresponds the pressure field speed v¼ 0:99
ffiffiffiffiffiffi
gh

p
¼

0:99c¼ 9:9 m/s. It is to be noted that the wedge angle 581 measured
from the simulated wave field at t¼48 s is an acceptable approxima-
tion to the theoretical value 511 of Havelock (1908) as can be seen in
Table 1 and Fig. 10 of Section 5.2.

5.2. Slender-body type pressure forcing

For a more ship-like form a slender shaped pressure field of
the form:

pðx,yÞ ¼ p0½1�cLðx=LÞ4�½1�cBðy=BÞ2�exp½�aðy=BÞ2� ð15Þ

is used. Here p0 is the peak pressure value which is set to 3000 Pa,
which is attained at x¼0, y¼0, L is the length-wise, B is the
breadth-wise parameter and a, cB, cL are shape constants which
are set to 16, 2, and 16, respectively. The pressure field pðx,yÞ is
defined only within the intervals �L=2rxrL=2 and �B=2ryr
B=2 and set to zero outside these regions. Fig. 7 shows the slender
parabolic type pressure field.

The simulation area is 600 m�300 m with grid sizes of

Dx¼Dy¼ 1 m and the time step Dt¼ 0:06 s. In the simulations
the length to beam ratio L/B is set to 5 with L¼100 m and B¼20 m

and the water depth is h¼20 m, resulting in c¼
ffiffiffiffiffiffi
gh

p
¼ 14 m=s.

Note that in the x-momentum equation px ¼�4p0ðcL=LÞðx=LÞ3ð1�cB

ðy=BÞ2Þe�aðy=BÞ2 and in the y-momentum equation py ¼�2p0ða=BÞ

½1�cLðx=LÞ4�½ðcB=aÞþ1�cBðy=BÞ2�ðy=BÞe�aðy=BÞ2 . Unlike the previous
Table 1
Comparisons of numerically obtained wedge angles with Havelock’s analytical

results for a range of depth-based Froude numbers.

Fr Wedge angle

Boussinesq

(numerical)

Havelock

(analytical)

Relative error

percentage (%)

0.63 18 19.69 8.58

0.70 20 20.26 1.29

0.75 21 21.10 0.47

0.86 26 25.36 2.51

0.90 25 28.50 12.28

0.96 35 37.78 7.37

0.97 44 40.69 8.14

0.98 51 44.66 14.18

0.99 54 51.01 5.86

1.01 82 81.93 0.08

1.05 72 72.25 0.34

1.10 64 65.38 2.11

1.20 57 56.44 0.99

1.30 51 50.28 1.42

1.40 44 45.58 3.48

1.50 41 41.81 1.94

1.70 37 36.03 2.69

1.80 33 33.75 2.22

2.00 30 30.00 0.00

Fig. 7. Perspective view of the slender-body type pressure distribution.
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test case, a range of depth-based Froude numbers is covered. Out of
19 test cases the contour plots of only three cases, corresponding to
Fr¼0.98 and 1.30 are shown in Figs. 8 and 9.

Havelock (1908) investigated the wave patterns due to a moving
surface pressure and showed the main differences between sub-
critical and supercritical Froude numbers. The results for the wedge
and propagation angles show that as the Froude number decreases
the divergent waves become more dominant while transverse wave’s
position, whether being crest or trough, changes with respect to ship
velocity. For the wedge angle of a point impulse moving on water of
finite depth Havelock gives

a¼ arccos
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ð1�nÞ

p
=ð3�nÞ if Frr1

a¼ arcsin
ffiffiffi
p
p

if Fr41
Fig. 8. Wave contours generated by a slender-body type moving pressure field

using Boussinesq model with b¼ 1=5 for Fr¼0.98: (a) t¼7.2 s, Fr¼0.98; (b) t¼15 s,

Fr¼0.98; (c) t¼24 s, Fr¼0.98.
where p¼ gh=v2 ¼ c2=v2 ¼ 1=Fr2. For a given Froude number or p in
the subcritical range, first kh is solved by iteration from the relation-
ship mð3�nÞ ¼ 2=p where m¼ tanh kh=kh and n¼ 2kh= sinh 2kh.
Afterwards, using the computed kh the numerical value of n is
obtained to compute a. For the supercritical range a is a function of p

alone therefore no additional computation is needed. The tabular
form of the numerically and analytically computed wedge angles
for the Froude numbers considered is given in Table 1. It should be
mentioned that some limited number of numerical values given by
Havelock does not exactly match with their counterparts in Table 1,
as the present table is compiled by high-accuracy computations.

It is to be noted that in the subcritical range as Froude number
approaches zero the relative depth kh becomes larger. On the other
hand, in the entire supercritical range kh assumes the limiting case
Fig. 9. Wave contours generated by a slender-body type moving pressure field

using Boussinesq model with b¼ 1=5 for Fr¼1.3: (a) t¼7.2 s, Fr¼1.3; (b) t¼15 s,

Fr¼1.3; (c) t¼24 s, Fr¼1.3.
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of zero and disappears from the wedge angle computations. Thus,
in a sense, low Froude numbers represent relatively deep waters
while high Froude numbers correspond to very shallow waters.
For Fr¼0 Kelvin’s well-known result of a deep-water wedge angle
a¼ 191280 is obtained as may be seen in Fig. 10 where the wedge
angles computed from Havelock’s analytical formulas and measured
from the graphs of the numerical solutions of the present Boussinesq
model are shown.

Finally, two perspective views of a nonlinear simulation with
slender-body shaped pressure field for Fr¼0.9 are shown in Fig. 11.
The nonlinearity is ascertained by considerably increased pressure
amplitude p0 (twice the previous simulations in Section 5.2). Never-
theless, no appreciable differences are observed in the wedge angles
for the simulation shown here and for the other simulations not
shown. The nonlinearity appears to affect the vertical symmetry of
the wave profile only. Otherwise, the essential characteristics of the
wave pattern remain nearly the same.
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Fig. 10. Comparison of numerically obtained wedge angles with Havelock’s theoretical

formulas.

Fig. 11. Perspective views of nonlinear waves generated by slender-body type

moving pressure for Fr¼0.9 at t¼10 s (a) and t¼20 s (b).
6. Conclusion

Several types of Boussinesq equations are in use for modeling
nearshore waves or waves in intermediate water depths. Besides
these rather common applications, the Boussinesq equations may
also be employed to model wave generation and propagation by
moving surface disturbances. The surface disturbance may come
from a moving free surface object or bottom movement as in the
case of underwater earthquakes. The former is associated with a
moving surface vessel, which is the main problem investigated in
this paper.

By adding a moving surface pressure into Boussinesq equations,
the wave patterns for different depth-based Froude numbers are
investigated for a hemispherical and for a slender-body type pressure
field, respectively. The slender-body type pressure distribution, which
represents a ship-like form in a more realistic way, is used for
numerical simulation of wave patterns for various Froude numbers.
The computed wedge angles are compared with Havelock’s (1908)
analytical results.

Comparisons reveal good agreement with the theory, espe-
cially for supercritical Froude numbers, FrZ1, where the relative
depth is small. In the subcritical range, Frr1, the average error
percentage between the computed and the theoretical values is
around 6.5%, considerably greater than those of the supercritical
range, which is on the average 1.5%. The reason for this asym-
metry in average error percentages between sub- and super-
critical Froude numbers is probably due to the depth limited
character of the Boussinesq equations albeit improved. As indi-
cated before, the subcritical range indicates relatively greater
depths with completely deep water for zero Froude number.
Therefore, the relatively poor performance of the numerical model
in the subcritical range may be attributed to the deep water
characteristics of the waves generated. Performance comparisons
with 3-D model simulations would clarify this particular point.
Nonlinearity appears to play only a relatively minor role by affecting
the wave symmetry without altering the overall wave patterns such
as the wedge angles as observed from the comparisons of the linear
and nonlinear simulations. Finally, applications of the present scheme
to study the transformation of ship-wave spectra over mildly varying
bathymetry and possible extensions of the equations to strongly
varying depths are being planned as future work.
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