
ELSEVIER Coastal Engineering 25 (1995) 81-85 

COASTAL 
ENGINEERING 

Note on a nonlinearity parameter of surface waves 

S. Beji 
Depamnent of Naval Architecture and Marine Technology, Istanbul Technical University, Maslak b’O626, 

Istanbul. Turkey 

Received 22 February 1994; accepted 22 August 1994 

Abstract 

A nonlinearity parameter which is valid for both deep and shallow water waves is introduced. The 
parameter may be regarded as a wave Froude number. A modified form of the Ursell number is also 
discussed. 

1. Introduction 

The absence of a unique nonlinearity parameter for water waves in arbitrary depth 
obviously originates from the ever conflicting duality of deep water waves versus shallow 
water waves. The apparently unbridgeable gap between these two main bodies of work has 
led to basically two different nonlinearity parameters: cd = ka and 8, = a/h where k is the 
wave-number, a is the wave amplitude, and h is the water depth. Here, through the use of 
nonlinear free surface conditions in conjunction with the results of linear theory, a nonli- 
nearity parameter is derived and shown to converge to both Ed and gs in the appropriate 
limits. 

2. Derivation 

In order to establish a non-dimensionalization procedure we first note that for waves 
propagating in water of arbitrary depth, linear theory predicts that orbital velocities are 
proportional to gu/c where g is the gravitational acceleration, a is wave amplitude and 
c=[(glk)tanhkh]“’ is phase speed. Surface elevation is simply proportional to wave 
amplitude a. Spatial variables may be scaled with wave-number, and a meaningful time 
scale would be the time necessary for a wave to travel a distance of its own length. In 
mathematical terms, we have 
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(x,y,z) =k(Z,y,f), t=kc< ~=$a 

(WJ,W) = (c/ga)(W,G), $= (kclga)q 

where the dimensional variables are marked by an overbar and it has tacitly been assumed 
that a velocity potential does exist. 

The equations governing the motion of surface waves are Laplace’s equation in the 
domain, bottom condition, and kinematic and dynamic boundary conditions on the free 
surface. When the non-dimensionalization procedure suggested above is carried out, Lapla- 
cc’s equation and bottom condition remain unchanged while the free surface conditions 
become 

(1) 

where the nonlinearity parameter .Y is given by 

(2) 

which may be regarded as a wave Froude number. The nonlinearity parameter defined above 
embodies both ed and .s~ as special cases. For deep water waves c2 approaches to glk hence 
E becomes &d = ka. On the other hand, in shallow water we have c* = gh, which, when used 
in Eq. (3), gives E= 4 =a/h. Theoretical significance of such a unified parameter is 
discussed by Beji and Nadaoka ( 1995) for a nonlinear wave model which is applicable at 
arbitrary depths. Note that in essence E= u/c, the ratio of particle velocity to phase speed 
(Froude number), which indicates that although both cd and cS appear as the measures of 
wave steepness, 8 conveys the additional connotation of being a measure of relative veloc- 
ities. This point is most relevant in obtaining Miche’s breaking criteria which is considered 
later. 

3. Remarks on wave Froude number and Ursell number 

In order to elucidate the essential aspects of the nonlinearity parameter introduced we 
shall consider a demonstrative example. Suppose that a unidirectional wave of arbitrary 
amplitude and period propagates over a uniform slope. For such a case the use of linear 
theory for estimating the increase or decrease in amplitude and wave-number is a plausible 
approximation and allows us to compute the spatial variations of cd, 4, and E easily. In 
Fig. 1 these nonlinearity parameters are compared for three different incident wave periods, 
corresponding respectively to intermediate kh = ~~12, deep kh = 37-r/2, and shallow kh = n-1 

10 water waves. The slope is 1 : 50 and the water depth in the deepest region is 25 meters, 
which reduces to 5 meters after a distance of 1000 meters. The incident wave amplitude is 
taken as 1 meter for simplicity. In case of the intermediate water wave, neither cd nor &S is 
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Fig. 1. Spatial variations of the nonlinearity parameters 6, q, and 8% for a uniform slope of 1 : 50. The incident 
wave amplitude is 1 meter at water depth of25 meters. In the upper graph the incident wave is intermediate-water 
wave with kh = d2. The middle graph SJIOWS the case for deep-water kh = 37v’2. and finalIy the lower graph is 
the shallow-water case kh = v/10. 
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a good approximation to .s, which is presumably a better definition. Note .sd in the deeper 
region (O-200 m) and .Y~ in the shallower region ( 800-1000 m) are comparable with E, as 
quite expected. The graphs showing deep kh= 3d2 and shallow kh= ITI 10 water cases 
reveal at once that in the former cd and in the latter .Y~ is an acceptable substitute for E, 
though some divergence is observed beyond the validity range of Q. In both cases however 
E,, and .ss strongly disagree with each other, demonstrating their separate domains of validity. 
The overall aspect of these comparisons shows that in comparison with E, cd and es always 
provide lower estimates for nonlinearity. 

A further point to note is the ratio C/Q appearing in Eq. ( 1). In deep water this ratio 
tends to unity and indicates that Q/at and a+/& are of the same order of magnitude. In 
shallow water however, the same ratio goes to llkh (or l/k as defined in the context of 
shallow water theory) and indicates that the non-dimensional vertical velocity must be 
scaled up by an amount of 1 //..L to balance the temporal variation of surface. This in turn 
implies the well-known fact that the magnitude of vertical particle velocities are smaller in 
shallow water than those in deep water. The fact that E/E~ converges to l/p for shallow 
water waves may well lead us to recognize E~/B as a new definition of the dispersion 
parameter CL. Then, by establishing an analogy with the classical definition of the Ursell 
number, Ur = ~,/p’, it is possible to define a variant of this parameter in terms of the E and 
.s,J.s as .s/ ( .sd/.s)* which is kul(tanh kh)3. For small kh this definition becomes identical 
with classical parameter, lJr= alk2h3, as indicated. On the other hand, for large kh it tends 
to ku while the Ursell number vanishes. Since the Ursell number is introduced to resolve 
the shallow water wave conflict (Ursell, 1953) its value for large kh is not quite meaningful. 
In this respect, unlike the new nonlinearity parameter, the new definition of the Ursell 
number does not provide a significant contribution. Nonetheless, for intermediate-shallow 
water waves the quantitative estimate of kul (tanh kh)3 is probably better than that of the 
original definition. Indeed it can be easily observed that (considering the deep water limit) 
the Ursell number always gives a lower estimate in comparison with kul (tanh kh)3. 

4. Miche’s breaking criteria 

Following an intuitive approach Miche postulated that breaking occurs when the fluid 
particle velocity at the wave crest equals the phase speed. Using the Stokes wave solution 
he calculated a theoretical limit for the maximum wave height (Mei, 1989, p. 469) : 

kf-Lx = 0.88tanh( kh) (4) 

where H,,, is the maximum wave height possible at the onset of breaking. 
Recalling that Eq. (3) may be written as E=U/C it becomes at once obvious that this 

parameter is in close correspondence with Miche’s breaking criteria. Thus, supposing that 
at a certain maximum value of E, say E = /3, breaking occurs and substituting c2 = (g/ 
k)tanh( kh) into Eq. (3) and rearranging give ku = ptanh( kh), which, when a = H,,,/2 
and p=O.44, becomes identical with Miche’s breaking criteria. Of course this simple 
demonstration is not the actual derivation of Miche’s criteria; the main purpose here is to 
establish the relevance of the new parameter to actual physics. 
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Finally, as the parameter introduced here is nothing but a Froude number, it is a simple 

matter to show that the same parameter may also be obtained from Euler’s equations of 
motion via the non-dimensionalization procedure used here. 
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