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1. Introduction

Obtaining the roots of a polynomial is one of the oldest problems of algebra.
While the solution of the second order equation was known quite earlier, it was
not until Tartaglia, Cardan and Ferrari in the 1540’s that the general solutions of
the third and fourth order equations became known. In the 17th and 18th century
innumerable futile attempts were made to solve the equation of the fifth degree.
Finally in 1824 Abel, in his well-known work on the quintic equation, proved the
impossibility of solving general equations of the fifth and higher degrees by means
of radicals [1, pages 207-212, 261-266].

In this work a systematic approach is introduced for the exact solution of a
degree n equation by first applying a Tschirnhaus transformation [2, pages 161-163]
and then establishing a corresponding degree (n−1) equation whose roots facilitate
the solution sought. The approach is termed systematic in the sense that the same
technique is applied to the second, third, fourth, and fifth degree equations by
straightforward extensions without altering the established framework. The results
for the second and third degree equations are in complete agreement with the
known solutions. The solution obtained for the fourth degree equation is completely
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new and different in form from the solution of Cardan and Ferrari. Application of
the technique to the quintic equation reveals that the solution is not possible.

2. Quadratic equation

In order to clarify the unified nature of the approach the simplest case of the
second degree is considered first. Let a second degree polynomial be in the form

P2(x) = x2 + ax + b (2.1)

with its roots x1 and x2. Introducing a new variable y and a constant θ = −a/2
such that x = y + θ = y − a/2 gives

Q2(y) = (y − a/2)2 + a(y − a/2) + b = y2 + (−a2 + 4b)/4. (2.2)

Noting that P2(θ) = (−a2 + 4b)/4 enables us to write

Q2(y) = y2 +
P2(θ)

0!
(2.3)

where θ = −a/2 is the constant employed in the Tschirnhaus transformation.
When applied to an nth degree polynomial the Tschirnhaus transformation makes
the coefficient of the (n − 1)th degree term zero. The zero factorial appearing in
(2.3) is not necessary; however, justification for its use shall be evident later. Note
that a compact form for the transformed equation is introduced by evaluating
the polynomial (and later its derivatives) for θ = −a/2. Such a formulation is
particularly advantageous for higher order polynomials.

Comparing now equation (2.1) with equation (2.3) we see that instead of two
independent constants a and b appearing in (2.1) we have just one independent
constant P2(θ) in (2.3). Reduction in the number of independent constants implies
that in the solution process just a single unknown quantity, say y1, would be
sufficient. The precise meaning of this statement shall be clear when the method
is applied to higher degree equations. Designating the root of (2.3) by y = y1 and
solving for y1 gives

y2
1 + P2(θ) = 0, y1 = ±

√
−P2(θ). (2.4)

Two solutions of equation (2.1) are then

x1 = θ + α1

√
−P2(θ), x2 = θ + α2

√
−P2(θ) (2.5)

where α1 = +1 and α2 = −1 are the roots of α2 = 1.

3. Cubic equation

Following the approach used for the second degree equation we begin with the
cubic polynomial

P3(x) = x3 + ax2 + bx + c (3.1)
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whose roots are assumed to be x1, x2, and x3. Defining now θ = −a/3 and applying
the change of variable x = y + θ = y − a/3 as in §2 results in

Q3(y) = (y − a/3)3 + a(y − a/3)2 + b(y − a/3) + c

= y3 + [(−a2 + 3b)/3]y + (2a3 − 9ab + 27c)/27. (3.2)

Again we note that

P2(θ) = [dP3(x)/dx]x=θ = 3θ2 + 2aθ + b = (−a2 + 3b)/3

P3(θ) = θ3 + aθ2 + bθ + c = (2a3 − 9ab + 27c)/27

so that equation (3.2) may be written as

Q3(y) = y3 +
P2(θ)

1!
y +

P3(θ)
0!

(3.3)

where θ = −a/3 is the Tschirnhaus constant for a cubic polynomial.
Similar to the previous case, three independent constants, a, b, c, have been

reduced to two new independent constants P2(θ) and P3(θ). Therefore, only two
independent parameters y1 and y2 should be sufficient to solve equation (3.3). Since
we are going to introduce only two parameters we expect to obtain a corresponding
second order equation whose solution would facilitate the solution of the cubic
equation.

Let y = y1 + y2 be the root of (3.3):

(y1 + y2)3 + P2(θ)(y1 + y2) + P3(θ) = 0. (3.4)

Re-arranging by factoring out (y1 + y2), which is supposed to be non-zero, gives

[y3
1 + y3

2 + P3(θ)] + [3y1y2 + P2(θ)](y1 + y2) = 0, (3.5)

which in turn requires

y3
1 + y3

2 = −P3(θ), y1y2 = −P2(θ)/3 (3.6)

if (3.5) is to be satisfied. From (3.6) it is obvious that a second order polynomial
whose roots are Y1 = y3

1 and Y2 = y3
2 may be established easily as

Y 2 + P3(θ)Y − P 3
2 (θ)/27 = 0. (3.7)

The solutions of (3.7) are (see [3] for details regarding the following forms)

y1 = Y
1/3
1 = 3

√

−P3(θ)/2 +
√

P 2
3 (θ)/4 + P 3

2 (θ)/27, (3.8)

y2 = Y
1/3
2 = 3

√

−P3(θ)/2 −
√

P 2
3 (θ)/4 + P 3

2 (θ)/27. (3.9)

In evaluating the cubic roots in (3.8) and (3.9) it is necessary to consider all three
possibilities α1 = +1, α2 = (−1 + i

√
3)/2, and α3 = (−1 − i

√
3)/2 for the roots

of α3 = +1. Therefore, in principle 32 = 9 combinations are possible for the ar-
rangement of y1 + y2 . However, equation (3.6) demands y1y2 = −P2(θ)/3 so that
an acceptable combination must satisfy the condition αiαj = +1. Hence, combi-
nations such as α1α2, α2α1, α1α3, α3α1, α2α2, and α3α3 (which give imaginary
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results) are all eliminated. Thus, the following three combinations, which satisfy
α1α1 = +1, α2α3 = +1, α3α2 = +1, remain as valid solutions

α1y1 + α1y2, α2y1 + α3y2, α3y1 + α2y2

Hence the final solutions to the roots of cubic polynomial given by (3.1) are

x1 = θ + α1y1 + α1y2

x2 = θ + α2y1 + α3y2 (3.10)
x3 = θ + α3y1 + α2y2

where θ = −a/3 and P3(θ), P2(θ) appearing in y1 and y2 are the given polynomial
and its first derivative evaluated for θ, respectively.

The solutions given in (3.10) together with (3.8) and (3.9) are in perfect
agreement with the well-known solutions [4, pages 115-130]. See also reference [5,
pages 261-310, 190-193] for a full account of the subject with historical remarks.

4. Quartic equation

In line with the approach used for the quadratic and cubic equations the exact
roots of a fourth degree polynomial are now formulated. The present solution is
novel in the sense that it is not in the form of the classic solution of Ferrari and
Cardan. Let a fourth order polynomial be of the form

P4(x) = x4 + ax3 + bx2 + cx + d (4.1)

whose roots are assumed to be x1, x2, x3, and x4. Letting θ = −a/4 and applying
the change of variable x = y + θ = y − a/4 as in §2 and §3 results in

Q4(y) = (y − a/4)4 + a(y − a/4)3 + b(y − a/4)2 + c(y − a/4) + d

= y4 + [(−3a2 + 8b)/8]y2 + [(a3 − 4ab + 8c)/8]y
+(−3a4 + 16a2b − 64ac + 256d)/256. (4.2)

We note the relations

P2(θ) =
[
d2P4(x)/dx2

]
x=θ

= 12θ2 + 6aθ + 2b = (−3a2 + 8b)/4,

P3(θ) = [dP4(x)/dx]x=θ = 4θ3 + 3aθ2 + 2bθ + c = (a3 − 4ab + 8c)/8,

P4(θ) = θ4 + aθ3 + bθ2 + cθ + d = (−3a4 + 16a2b − 64ac + 256d)/256.

Then, equation (4.2) may be written as

Q4(y) = y4 +
P2(θ)

2!
y2 +

P3(θ)
1!

y +
P4(θ)

0!
(4.3)

where θ = −a/4 as indicated before. It is worth to remark again that four inde-
pendent coefficients, a, b, c, d, have been reduced to three now: P2(θ), P3(θ), and
P4(θ). We may therefore attempt to solve equation (4.3) in terms of only three
independent parameters, say y1, y2, y3. As we are going to introduce three pa-
rameters we expect to obtain a corresponding third order equation whose solution
would facilitate the solution of the fourth order equation.
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Let y = y1 + y2 + y3 be the root of (4.3):

(y1 + y2 + y3)4 +
P2(θ)

2
(y1 + y2 + y3)2

+ P3(θ)(y1 + y2 + y3) + P4(θ) = 0. (4.4)

Expanding the second and fourth powers and gathering the terms proportional to
(y1 + y2 + y3) and (y1y2 + y1y3 + y2y3) gives

y4
1 + y4

2 + y4
3 + 6(y2

1y
2
2 + y2

1y
2
3 + y2

2y
2
3) +

P2(θ)
2

(y2
1 + y2

2 + y2
3) + P4(θ)

+ [4(y2
1 + y2

2 + y2
3) + P2(θ)](y1y2 + y1y3 + y2y3)

+ [8y1y2y3 + P3(θ)](y1 + y2 + y3) = 0. (4.5)

We first require that the terms inside the square brackets vanish separately so that

y2
1 + y2

2 + y2
3 = −P2(θ)/4, (4.6)

y1y2y3 = −P3(θ)/8. (4.7)

The next step is to equate the remaining terms, which appear in the first line of
(4.5), to zero. Before doing so we square equation (4.6) and solve for y2

1y
2
2 +y2

1y
2
3 +

y2
2y

2
3 as

y2
1y

2
2 + y2

1y
2
3 + y2

2y
2
3 = P 2

2 (θ)/32 − (y4
1 + y4

2 + y4
3)/2 (4.8)

which, together with (4.6), may be used in the remaining part of (4.5) to get

y4
1 + y4

2 + y4
3 = P 2

2 (θ)/32 + P4(θ)/2. (4.9)

Thus, as long as equations (4.6), (4.7), and (4.9) hold, equation (4.5) hence (4.4) is
satisfied. However, for solving y1, y2, y3 we still need to establish a corresponding
cubic equation.

Using (4.9) in (4.8) now gives

y2
1y

2
2 + y2

1y
2
3 + y2

2y
2
3 = P 2

2 (θ)/64 − P4(θ)/4 (4.10)

which, after squaring, may be arranged as

y4
1y

4
2 + y4

1y
4
3 + y4

2y
4
3 + 2y2

1y
2
2y

2
3(y

2
1 + y2

2 + y2
3) = [P 2

2 (θ)/64 − P4(θ)/4]2. (4.11)

Making use of (4.6) and (4.7) in (4.11) results in

y4
1y

4
2 + y4

1y
4
3 + y4

2y
4
3 = [P 2

2 (θ)/64 − P4(θ)/4]2 + P2(θ)P 2
3 (θ)/128. (4.12)

Equations (4.9), (4.12) and the fourth power of (4.7) now provide all the necessary
equations for establishing a cubic polynomial whose roots are y4

1 , y4
2 , y4

3 :

Y 3 − [P 2
2 (θ)/32 + P4(θ)/2]Y 2 + {[P 2

2 (θ)/64 − P4(θ)/4]2

+P2(θ)P 2
3 (θ)/128}Y − [P 4

3 (θ)/4096] = 0. (4.13)

The problem of obtaining the roots of a fourth order polynomial has thus been
reduced to the problem of obtaining the roots of a cubic polynomial, which in turn
may be reduced to solving a second degree equation.

Since y1 = 4
√

Y1, etc. the solutions of α4 = +1 must be considered in estab-
lishing the appropriate combinations. In this case α1 = +1, α2 = −1, α3 = +i,
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and α4 = −i. By inspections similar but much lengthier than §3 the following four
combinations are established as valid solutions to equation (4.3):

α1y1 + α1y2 + α3y3, α1y1 + α2y2 + α4y3

α2y1 + α1y2 + α4y3, α2y1 + α2y2 + α3y3

An important side condition is that the real root must be assigned to y1 unless all
the roots are real with a zero root; in the latter case zero must be assigned to y3.
The final solutions to the roots of quartic polynomial given by (4.1) are

x1 = θ + α1y1 + α1y2 + α3y3

x2 = θ + α1y1 + α2y2 + α4y3

x3 = θ + α2y1 + α1y2 + α4y3 (4.14)
x4 = θ + α2y1 + α2y2 + α3y3

where θ = −a/4 as defined before. It is understood that the fourth roots of Y1,
Y2, and Y3, which are necessary for obtaining y1 = 4

√
Y1, etc. are computed as the

first quadrant values.
In the development of these solutions the most challenging part is obviously

to express (y4
1y

4
2+y4

1y
4
3+y4

2y
4
3) using the available quantities (y2

1+y2
2+y2

3), (y1y2y3),
and (y4

1+y4
2 +y4

3). Above this is accomplished in an intuitive way; however, for fifth
and higher order equations the intuitive approach is virtually impossible due to
extremely large number of possibilities. A routinely applicable method is desirable.
This is possible by dimensional analysis. Supposing each one of the quantities y1,
y2, y3 has the dimension of unity then the given quantities (y2

1 +y2
2 +y2

3), (y1y2y3),
and (y4

1 +y4
2 +y4

3) would have the dimensions of D2, D3 and D4, respectively. Since
the aimed expression (y4

1y
4
2 +y4

1y
4
3 +y4

2y
4
3) has the dimension of D8, the possibilities

of constructing a quantity of dimension D8 using the quantities of dimensions D2,
D3 and D4 may be enumerated as D2D

2
3, D2

2D4, D4
2, and D2

4 . In other words,
only these combinations would be dimensionally acceptable. If each possibility is
multiplied by an unknown constant and all are added together, the constants may
be determined by equating the resulting expression to the desired quantity:

A(y2
1 + y2

2 + y2
3)(y1y2y3)2 + B(y2

1 + y2
2 + y2

3)
2(y4

1 + y4
2 + y4

3)
+C(y2

1 + y2
2 + y2

3)
4 + D(y4

1 + y4
2 + y4

3)
2 = y4

1y
4
2 + y4

1y
4
3 + y4

2y
4
3 (4.15)

where A, B, C, and D are the arbitrary constants to be determined. After ex-
panding and re-arranging,

(B + C + D)(y8
1 + y8

2 + y8
3) + (2B + 6C + 2D)(y4

1y
4
2 + y4

1y
4
3 + y4

2y
4
3)

+(2B + 4C)(y6
1y

2
2 + y2

1y
6
2 + y6

1y
2
3 + y6

2y
2
3 + y2

1y
6
3 + y2

2y
6
3)

+(A + 2B + 12C)(y2
1 + y2

2 + y2
3)(y

2
1y2

2y
2
3) = y4

1y
4
2 + y4

1y
4
3 + y4

2y
4
3

which in turn dictates the following equalities

B + C + D = 0, 2B + 6C + 2D = 1,

2B + 4C = 0, A + 2B + 12C = 0.
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The solution is possible and may be easily obtained as

A = −2, B = −1/2, C = 1/4, D = 1/4.

Using these values in (4.15) it is at once possible to write y4
1y

4
2 + y4

1y
4
3 + y4

2y
4
3 in

terms of the known quantities:

−2 [−P2(θ)/4] [−P3(θ)/8]2 − (1/2)
[
P 2

2 (θ)/32 + P4(θ)/2
]
[−P2(θ)/4]2

+(1/4) [−P2(θ)/4]4 + (1/4)
[
P 2

2 (θ)/32 + P4(θ)/2
]2

= y4
1y

4
2 + y4

1y
4
3 + y4

2y
4
3

or

y4
1y

4
2 + y4

1y
4
3 + y4

2y
4
3 = [P 2

2 (θ)/64 − P4(θ)/4]2 + P2(θ)P 2
3 (θ)/128

as obtained previously in equation (4.12). We have thus established a routine
approach which may be adapted for more complicated cases, such as a quintic
equation.

4.1. Numerical example

The solution obtained for the quartic equation is new; therefore, a simple numerical
demonstration may be useful. We begin with a polynomial with known roots so
that the solution may be compared at once. Let

P4(x) = (x − 1)(x + 2)(x − 1 − i)(x − 1 + i)
= x4 − x3 − 2x2 + 6x − 4

whose roots are obviously x1 = +1, x2 = −2, x3 = 1 + i, and x4 = 1 − i. The
Tschirnhaus constant is θ = −a/4 = 1/4 so that P2(1/4) = −19/4, P3(1/4) =
39/8, and P4(1/4) = −675/256. We can make use of (4.3) to write down the
transformed equation after the change of variable x = y + θ = y + 1/4 as

Q4(y) = y4 − 19
8

y2 +
39
8

y − 675
256

.

According to (4.13) the corresponding third order equation is

Y 3 +
157
256

Y 2 +
9283
2562

Y − 394

2563
= 0

which has the solutions (as can be computed from (3.8), (3.9), and (3.10)):

Y1 =
81
256

, Y2 = −119
256

+
120
256

i, Y3 = −119
256

− 120
256

i.

Computing the fourth roots gives (using the first quadrant values)

y1 = (Y1)1/4 =
3
4
, y2 = (Y2)1/4 =

3
4

+
1
2

i, y3 = (Y3)1/4 =
1
2

+
3
4

i.
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Following (4.14) we can compute the roots of the given equation as

x1 =
1
4

+ 1 ·
(

3
4

)
+ 1 ·

(
3
4

+
1
2
i
)

+ i ·
(

1
2

+
3
4
i
)

= 1 + i

x2 =
1
4

+ 1 ·
(

3
4

)
− 1 ·

(
3
4

+
1
2
i
)
− i ·

(
1
2

+
3
4
i
)

= 1 − i

x3 =
1
4
− 1 ·

(
3
4

)
+ 1 ·

(
3
4

+
1
2
i
)
− i ·

(
1
2

+
3
4
i
)

= 1

x4 =
1
4
− 1 ·

(
3
4

)
− 1 ·

(
3
4

+ 12i
)

+ i ·
(

1
2

+
3
4
i
)

= −2

which are the expected values. Note that the real root 3/4 has been assigned to
y1 according to the condition stated in §4.

5. Quintic equation

Abel proved the impossibility of formulating the roots of the fifth and higher order
polynomials by means of radicals. Here, we shall apply the method used in this
work to the quintic equation and likewise arrive at the conclusion that the solution
is not possible. Let a fifth order polynomial be of the form

P5(x) = x5 + ax4 + bx3 + cx2 + dx + e (5.1)

and introduce θ = −a/5 such that x = y + θ = y − a/5 as in the previous cases.
The transformed polynomial becomes

Q5(y) = y5 +
P2(θ)

3!
y3 +

P3(θ)
2!

y2 +
P4(θ)

1!
y +

P5(θ)
0!

(5.2)

where

P2(θ) =
[
d3P5(x)/dx3

]
x=θ

= (−12a2 + 30b)/5

P3(θ) =
[
d2P5(x)/dx2

]
x=θ

= (8a3 − 30ab + 50c)/25

P4(θ) = [dP5(x)/dx]x=θ = (−3a4 + 15a2b − 50ac + 125d)/125

P5(θ) = (4a5 − 25a3b + 125a2c − 625ad + 3125e)/3125

Following the established approach let y = y1 + y2 + y3 + y4 be the root of (5.2)

(y1 + y2 + y3 + y4)5 +
P2(θ)

6
(y1 + y2 + y3 + y4)3

+
P3(θ)

2
(y1 + y2 + y3 + y4)2 + P4(θ)(y1 + y2 + y3 + y4) + P5(θ) = 0.

Expanding the second, third, and fifth powers, manipulating and gathering the
terms proportional to (y1 + y2 + y3 + y4), (y1y2 + y1y3 + y2y3 + y1y4 + y2y4 + y3y4),
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and (y1y2y3 + y1y2y4 + y1y3y4 + y2y3y4) gives

6(y5
1 + y5

2 + y5
3 + y5

4) − 20(y3
1 + y3

2 + y3
3 + y3

4)(y
2
1 + y2

2 + y2
3 + y2

4)
−P2(θ)(y3

1 + y3
2 + y3

3 + y3
4)/3 + P3(θ)(y2

1 + y2
2 + y2

3 + y2
4)/2 + P5(θ)

+[15(y2
1 + y2

2 + y2
3 + y2

4)
2 + P2(θ)(y2

1 + y2
2 + y2

3 + y2
4)/2

+30(y1y2y3y4) + P4(θ)](y1 + y2 + y3 + y4)
−[10(y3

1 + y3
2 + y3

3 + y3
4) − P3(θ)](y1y2 + y1y3 + y2y3 + y1y4 + y2y4 + y3y4)

+[30(y2
1 + y2

2 + y2
3 + y2

4) + P2(θ)](y1y2y3 + y1y2y4 + y1y3y4 + y2y3y4) = 0.

First requiring that the terms inside the brackets vanish separately and then us-
ing the expressions obtained in the remaining parts of the equation provides the
following equalities

y5
1 + y5

2 + y5
3 + y5

4 = −1
6

[
P2(θ)P3(θ)

60
+ P5(θ)

]
, y1y2y3y4 = −P4(θ)

30
,

y3
1 + y3

2 + y3
3 + y3

4 =
P3(θ)

10
, y2

1 + y2
2 + y2

3 + y2
4 = −P2(θ)

30
.

Obviously now the quantities (y5
1y

5
2 + y5

1y
5
3 + y5

2y
5
3 + y5

1y
5
4 + y5

2y
5
4 + y5

3y
5
4), (y5

1y
5
2y

5
3 +

y5
1y

5
2y

5
4 + y5

1y
5
3y

5
4 + y5

2y
5
3y

5
4), and (y5

1y5
2y

5
3y

5
4) are needed to establish a fourth-order

equation for obtaining y5
1 ,y

5
2 ,y

5
3 ,y

5
4 hence y1,y2,y3,y4. The quantity (y5

1y
5
2y

5
3y

5
4) is

readily available by taking the fifth power of y1y2y3y4 = −P4(θ)/30; however, the
others pose a real challenge. As indicated in §4 the intuitive approach is virtually
impossible to adopt due to the extremely large number of possibilities. Therefore
we resort to the dimensional approach and again suppose that each one of y1, y2, y3,
y4 has the dimension of unity so that the available quantities (y2

1+y2
2+y2

3+y2
4), (y3

1+
y3
2+y3

3+y3
4), (y1y2y3y4), and (y5

1+y5
2+y5

3+y5
4) would have the dimensions of D2, D3,

D4 and D5, respectively. The sought expressions (y5
1y

5
2+y5

1y
5
3+y5

2y
5
3+y5

1y
5
4+y5

2y
5
4+

y5
3y

5
4) and (y5

1y
5
2y

5
3 +y5

1y
5
2y

5
4 +y5

1y
5
3y

5
4 +y5

2y
5
3y

5
4) have the dimensions of D10 and D15

in the given order. We may begin with the first expression and attempt to construct
a quantity of dimension D10 using the quantities of dimensions D2, D3, D4 and
D5. The possible combinations are D5

2, D2
2D

2
3 , D3

2D4, D2D
2
4, D2D3D5, D2

3D4, D2
5 .

Using each dimensionally acceptable combination we can construct a sum that
would contain all these possibilities. Accordingly, each acceptable combination is
multiplied by an unknown constant and all are added together. By equating the
final expression to the aimed expression the unknown constants are determined:

A(y2
1 + y2

2 + y2
3 + y2

4)
5 + B(y2

1 + y2
2 + y2

3 + y2
4)

2(y3
1 + y3

2 + y3
3 + y3

4)
2

+C(y2
1 + y2

2 + y2
3 + y2

4)
3(y1y2y3y4) + D(y2

1 + y2
2 + y2

3 + y2
4)(y1y2y3y4)2

+E(y2
1 + y2

2 + y2
3 + y2

4)(y
3
1 + y3

2 + y3
3 + y3

4)(y
5
1 + y5

2 + y5
3 + y5

4)
+F (y3

1 + y3
2 + y3

3 + y3
4)

2(y1y2y3y4) + G(y5
1 + y5

2 + y5
3 + y5

4)
2

= (y5
1y

5
2 + y5

1y
5
3 + y5

2y
5
3 + y5

1y
5
4 + y5

2y
5
4 + y5

3y
5
4)

After collecting the like terms the resulting set of linear algebraic equations is
found to be over-determined hence it is concluded impossible to express (y5

1y
5
2 +
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y5
1y

5
3+y5

2y
5
3+y5

1y
5
4+y5

2y
5
4+y5

3y
5
4) in terms of the known quantities (y2

1+y2
2+y2

3+y2
4),

(y3
1 + y3

2 + y3
3 + y3

4), (y1y2y3y4), and (y5
1 + y5

2 + y5
3 + y5

4).
A preliminary attempt of expressing (y5

1y
5
2y

5
3 + y5

1y
5
2y

5
4 + y5

1y
5
3y

5
4 + y5

2y
5
3y

5
4)

in terms of available quantities yields 14 possible combinations (D6
2D3, D5

2D5,
D4

2D3D4, D3
2D

3
3 , D3

2D4D5, D2
2D

2
3D5, D2

2D3D
2
4, D2D

3
3D4, D2D3D

2
5, D2D

2
4D5, D5

3 ,
D2

3D4D5, D3D
3
4 , D3

5) and consequently much more complicated expressions. Since
we have already failed to express one of the needed quantities it is deemed futile
to pursue the matter further for the second quantity.

6. Concluding remarks

A well-defined technique for obtaining the roots of a polynomial of degree n < 5 is
established. First an appropriate Tschirnhaus transformation is applied and then
the coefficients of the transformed equation are expressed in convenient forms
through the use of the polynomial and its derivatives evaluated for the Tschirn-
haus constant. Finally, the solution of the transformed equation is sought as a
summation of n−1 independent parameters which are to be arranged as the roots
of a polynomial of degree n− 1. The approach presented here may be viewed as a
process of reducing the degree of a polynomial equation by one. This systematic
methodology produces solutions for the second, third, and fourth order polynomi-
als in exactly the same manner. Application of the method to the quintic equation
reveals Abel’s well-known conclusion that the problem is insolvable.
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