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A different approach to the solution of the singular Rayleigh equation is presented
in the context of the water wave growth problem as modelled by wind-induced shear
instabilities. The approach is based on the analytical solution of a Bessel equation in
the vicinity of the singular point, which is obtained from Rayleigh’s equation with an
arbitrary wind profile. Wave growth rates are computed using an integral expression
derived from the dispersion relation of the air–sea interface. Computations of the
present approach agree well with those of Conte & Miles (1959) for the special case
of a logarithmic wind profile. Effects of the shape of the wind profile on the wave
growth rate are investigated by using the 1/7-power law to represent the wind profile.
Comparisons of the growth rates for the logarithmic wind profile and for the 1/7
profile reveal appreciable differences which must be investigated further, possibly
using measured wind profiles within 10 m above the sea surface.

1. Introduction
In his work on the effect of wind on water waves, Kelvin (1871) assumed a friction-

less interface, hence a discontinuity of velocities between two fluids, and accordingly
determined the conditions of instability. Adopting a similar approach, Rayleigh
(1879) studied the instability of jets; however, noting a serious problem in his results
concerning the high-frequency motions, Rayleigh (1880) suggested an improvement
in the theory by supposing a gradual change in air velocity instead of a discontinuity
at the interface. Thus, he derived an equation which is known today as Rayleigh’s
instability equation or simply the Rayleigh equation. Nevertheless, Rayleigh did not
attempt to apply his improvement of the theory to the problem of wave generation by
wind.

Quite some time later, Miles (1957) took up the wave growth problem at exactly
the point Rayleigh left off. He proposed a model for the growth of wind waves on
the basis of Rayleigh’s equation with a logarithmic wind profile that was in line
with Rayleigh’s vision of a gradually changing air velocity. Following Miles (1957),
Conte & Miles (1959) presented an accurate method for computing wave growth rates
through numerical solution of Rayleigh’s equation for the logarithmic wind profile.
Since then, the approach of Conte & Miles (1959) has been more or less the only
way of tackling this problem numerically.

Miles’s model predicts wave growth rates quite commensurate with the observations
but somewhat underestimates the growth rate of long waves with phase speeds nearly
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equal to the wind speed at 10 m height (see Komen et al. 1994, p. 72). Numerous
attempts to improve the theory by various means have been made. Considering the
effects of small-scale turbulence attracted most attention (Gent & Taylor 1976; Al-
Zanaidi & Hui 1984; Jakobs 1987; Chalikov & Makin 1991); but results of these works
do not differ much from those of Miles. Fabrikant (1976), and later Janssen (1982)
advanced the so-called quasi-linear theory of wave generation in which waves modify
mean wind velocity in a coupled manner. Further elaborations and applications of
this theory were reported by Janssen, Lionello & Zambresky (1989). Nikolayeva &
Tsimring (1986) computed substantially enhanced energy transfer due to large-scale
turbulence effects, also termed gustiness. On the other hand, starting from the same
model, Miles & Ierley (1998) obtained growth rate enhancements considerably less
than those predicted by Nikolayeva & Tsimring (1986). A penetrating account of the
surface-wave generation by wind, associated problems, and historical details may be
found in Miles (1997).

Despite such considerable work on the turbulent modelling and the effects of waves
on the drag coefficient, the almost universally accepted logarithmic mean wind profile
itself has not been questioned. While quite recent measurements of Powell, Vickery &
Reinhold (2003) provide probably the first data confirming a logarithmic wind profile
for 10 m to 200 m heights in a marine environment, no measurements exist to confirm
the validity of the logarithmic wind profile over sea waves below 10 m height where
basically all the wave growth computations show strong influences. Determining the
mean wind profile in the range of 0–10 m is obviously a very difficult task, if not
impossible. In absence of such measurements it seems plausible to make allowances
for the possible variations in the shape of the wind profile rather than strictly adhering
to the logarithmic profile.

The present work reconsiders the wind-wave growth problem from a wider
perspective and introduces a different approach to solving Rayleigh’s instability
equation for arbitrary mean wind profiles. The solution technique, originally suggested
by Rayleigh (1895) himself, is based on re-casting the Rayleigh equation first into
a Riccati equation, which is valid strictly in the vicinity of the so-called critical
point where the wind speed equals the wave speed. Through appropriate change of
dependent and independent variables the Riccati equation is then transformed to
a Bessel equation, from which two linearly independent solutions are obtained for
the initiation of the numerical integration. Thus, unlike the standard approach of
obtaining an approximate series solution of the Rayleigh equation around the critical
point, the present approach modifies the Rayleigh equation to obtain a differential
equation with well-known analytical solutions.

Wave growth rates are also computed in an unconventional way by implementing
the dispersion relation of the air–sea interface, which involves the vertical integration
of the disturbed vertical velocity weighted by the wind profile. The integration provides
a smoothing effect in the computations and is found to give more reliable results for
the 1/7 profile compared to the conventional single-point computation of the wave
growth rate. Comparisons of the growth rates with those of Conte & Miles (1959)
for the logarithmic wind profile reveal excellent agreement, confirming the accuracy
of the method presented.

Taking advantage of the general applicability of the solution technique, the 1/7
power law profile, which is apparently the only alternative wind profile at present, is
used for investigating the effects of profile change on the wave growth rate. Plotted
growth rates show appreciable qualitative and quantitative differences, pointing out
the necessity of studying the actual wind profiles within 10 m above the sea surface.
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Further, the effect of coupling between the wind and the surface deformation for
different wind profiles should be investigated for realistic conclusions.

2. Rayleigh’s instability equation and its solution
2.1. Rayleigh’s equation

In two dimensions the governing equations of linearized inviscid shear flow for air
with a prescribed mean wind velocity U (z) are given by (see Drazin & Reid 1981,
p. 127)

ut + U (z)ux + U ′(z)w = −px/ρa, (2.1)

wt + U (z)wx = −pz/ρa − g, (2.2)

ux + wz = 0, (2.3)

where u and w are the horizontal and vertical components of the disturbed velocity,
p is the pressure, ρa is the density of the air, and g is the gravitational acceleration.
A subscript denotes partial differentiation with respect to the indicated variable and
a prime stands for differentiation with respect to the vertical coordinate z.

Assuming the horizontal motion periodic in time and in space, the disturbed vertical
velocity component is taken as

w(x, z, t) = W (z) exp[ik(x − ct)], (2.4)

where k is the wavenumber, c is the wave celerity, and W (z) is a function of the
vertical coordinate z only. From the continuity equation (2.3),

u(x, z, t) = (i/k)W ′(z) exp[ik(x − ct)]. (2.5)

Eliminating pressure by cross-differentiating (2.1) and (2.2) and making use of (2.4)
and (2.5) result in Rayleigh’s instability equation in terms of W (z):

[U (z) − c ] (W ′′ − k2W ) − U ′′(z)W = 0. (2.6)

The above equation is obviously singular at the critical height z = zc where U (zc) = c.
At present no exact analytical solution of the Rayleigh equation exists; therefore, the
usual approach is to resort to a combination of analytical and numerical methods.
The first known analytical approximate solution is attributed to Heisenberg (1924)
while a well-known form is due to Tollmien (1929) in connection with his work on
the Orr–Sommerfeld equation.

2.2. Solution technique

Based on Rayleigh’s (1895) ideas, a technique is now introduced for obtaining an
approximate analytical solution of equation (2.6) around the singular point zc for
an arbitrary wind profile U (z) with non-zero second derivative. First, in the vicinity
of the singular point U (z) is approximated by its linearized form while the second
derivative of U (z) is replaced by its constant value at zc:

U (z) � U ′(zc)(z − zc) + c, U ′′(z) � U ′′(zc). (2.7)

These two approximations should be viewed separately and independent of each other
since the former does not imply the latter. Using these approximations in equation (2.6)
and introducing a change of independent variable as z̃ = − U ′′(zc)(z − zc)/U ′(zc)
results in the following differential equation which is valid expressly in the close
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neighbourhood of zc:

d2W

dz̃2
+

[
1

z̃
− k2

[
U ′(zc)

U ′′(zc)

]2
]

W = 0. (2.8)

Physically, the non-dimensional quantity z̃ = − U ′′(zc)(z − zc)/U ′(zc) may be inter-
preted as the ratio of the change in the mean vorticity to the mean vorticity and
it plays a decisive role in the analytical solution around the critical point.

Near the critical point z̃ approaches zero, hence 1/z̃ becomes large in comparison
with [kU ′(zc)/U ′′(zc)]

2; therefore, equation (2.8) may be further approximated as

d2W

dz̃2
+

1

z̃
W = 0, (2.9)

which is a Riccati equation. First changing the dependent variable W =
√

z̃Ψ and
then changing the independent variable again, ξ = 2

√
z̃, transforms equation (2.9) to

ξ 2 d2Ψ

dξ 2
+ ξ

dΨ

dξ
+ (ξ 2 − 1)Ψ = 0, (2.10)

which is a Bessel equation of order one. The two linearly independent solutions of
equation (2.10) are given in terms of the Bessel functions of order one:

Ψ (ξ ) = AJ1(ξ ) + BY1(ξ ), (2.11)

where A and B are arbitrary constants. Going back to the original variables gives

W (z̃) =
√

z̃[AJ1(2
√

z̃) + BY1(2
√

z̃)], (2.12)

in which z̃ = −U ′′(zc)(z−zc)/U ′(zc) as defined before. Note that for negative values of
z̃ the argument of the Bessel functions is pure imaginary. The above solution, which
is valid in the immediate vicinity of the critical point, provides the starting values for
the numerical integration of equation (2.6).

The details of the numerical procedure may be described as follows. First, a
small quantity, say ε ∼ 10−3 − 10−6, is selected and just below the critical point zε− =
zc(1 − ε) is defined. Then,

√
z̃J1(2

√
z̃) and [

√
z̃J1(2

√
z̃)]′ evaluated at z̃ε− =

−U ′′(zc)(zε− − zc)/U ′(zc) supply the starting values for the first linearly independent
solution and

√
z̃Y1(2

√
z̃) and [

√
z̃Y1(2

√
z̃)]′ those for the second solution. In the present

problem z̃ε− < 0, therefore care must be observed in using the complex-conjugate values
of

√
z̃Y1(2

√
z̃) and [

√
z̃Y1(2

√
z̃)]′ at z̃ε− to ensure a positive growth rate (that is to

say, making the appropriate detour about the singularity; see Drazin & Reid 1981,
p. 138) as these terms implicity contain the logarithmic singularity. Having prescribed
the necessary starting values, equation (2.6) is numerically integrated in the negative
direction (below the critical point) for each set of initial conditions between zε− and z0,
which is termed the roughness length of the air–water interface and discussed further
in § 4. The values of linearly independent solutions at the lower limit z0, as obtained
from two separate numerical integrations, are denoted by WJ1

(z0) and WY1
(z0), and

retained for later use in satisfying the boundary conditions. The second part of the
numerical integration proceeds in the positive direction (above the critical point)
between zε+

= zc(1 + ε) and z∞, which is a relatively large and indefinite upper limit
to be determined according to a convergence criterion. The starting values are again
provided from the analytical solution as described above but this time evaluated at
z̃ε+

= −U ′′(zc)(zε+
− zc)/U ′(zc). At every integration step in the positive direction the

boundary conditions are used to determine the unknown coefficients, say A and B
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again, of the desired solution. If the difference in one of the coefficients between two
successive steps is less than a specified small value the computation is terminated and
the computed values of the linearly independent solutions are denoted by WJ1

(z∞) and
WY1

(z∞). Trial computations show that instead of applying a convergence criterion
with an unfixed upper limit of integration it is more convenient and quite sufficient
to perform the integration to the fixed height of λ= 2π/k.

The boundary conditions imposed are typical of this kind of problem. Just above
the interface at z = z0, a definite value for the vertical velocity, say W0, is enforced.
For great heights, z = z∞, the disturbances are assumed to vanish: W ′ + kW = 0.
Accordingly,

AWJ1
(z0) + BWY1

(z0) = W0, (2.13)

A
[
W ′

J1
(z∞) + kWJ1

(z∞)
]
+ B

[
W ′

Y1
(z∞) + kWY1

(z∞)
]

= 0. (2.14)

Solving for the unknown coefficients A and B gives

A =
−

[
W ′

Y1
(z∞) + kWY1

(z∞)
]
W0/WY1

(z0){
W ′

J1
(z∞) + kWJ1

(z∞) −
[
W ′

Y1
(z∞) + kWY1

(z∞)
]
WJ1

(z0)/WY1
(z0)

} , (2.15)

B =

[
W0 − AWJ1

(z0)
]

WY1
(z0)

, (2.16)

which are either evaluated at every integration step in the positive z-direction till the
specified criterion is met at the previously unknown height z∞, or, if a fixed height
is preferred, evaluated only at the pre-selected final height, say z = λ. Note that since
the solution is complex the coefficients A and B are complex too.

3. Dispersion relation of the air–sea interface
Substituting equation (2.4) into (2.2), supposing p(x, z, t) =Pa(z) exp[ik(x − ct)] for

the air pressure and integrating from the sea surface η = a exp[ik(x − ct)] to +∞ gives
for Pa(η)

Pa(η) = P0 − ρaga + iρak

∫ +∞

z0

[U (z) − c] W (z) dz, (3.1)

where P0 = ρagh∞ is the atmospheric pressure at the surface and the lower limit of
the integration has been set to z0 instead of η, since the problem is linearized. Pa(+∞)
is assumed to vanish. For later purposes it is necessary to make use of the kinematic
boundary condition at z = η for air:

ηt + U (z)ηx = w at z = η. (3.2)

Similar to equation (3.1), the above boundary condition is evaluated at the roughness
height z = z0 instead of the actual free surface z = η. Noting that by definition the
mean wind velocity U (z) vanishes at z = z0 (see § 4) equation (3.2) becomes

−ikca = W (z0) = W0. (3.3)

Using (3.3) in (3.1) gives

Pa(η) = P0 − ρaga + ρakc2a
(k/c)

W0

∫ ∞

z0

[U (z) − c]W (z) dz, (3.4)

which is the air pressure on the free surface due to the wind.
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For the water wave motion it is fairly straightforward to show that for deep-water
waves the pressure on the free surface can be expressed as

Pw(η) = P0 − ρwga + ρwkc2a, (3.5)

where ρw is the density of the water. The dispersion relation of the combined air–water
system can then be obtained from the continuity of pressure across the interface; that
is, Pa(η) = Pw(η):

P0 − ρaga + ρakc2a
(k/c)

W0

∫ ∞

z0

[U (z) − c] W (z) dz = P0 − ρwga + ρwkc2a. (3.6)

Eliminating P0, dividing by ρwa, and solving for c2 results in

c2 =
g

k

(1 − s)[
1 − s

(k/c)

W0

∫ +∞

z0

[U (z) − c]W (z) dz

] , (3.7)

where s = ρa/ρw . Defining a dimensionless complex integral,

Ic =
(k/c)

W0

∫ +∞

z0

[U (z) − c]W (z) dz, (3.8)

and noting that s � 10−3 is a small quantity, (3.7) may be approximated as

c � c0[(1 − s/2)/(1 − sIc/2)] � c0(1 − s/2 + sIc/2), (3.9)

in which c0 =
√

g/k is the deep-water wave celerity. Note that both W (z) and c

appearing in the integral Ic are complex; but in evaluating the integral the unknown
complex phase speed c may be taken approximately real as its imaginary part is
proportional to s, hence negligibly small. Once W (z) is determined, the complex
integral Ic, hence the growth rate, can be computed as the complex part of kc that
would promote the growth (or decay) of the surface elevation η = a exp[ik(x − ct)]:

γ = kIm(c) = (1/2)skc0Im(Ic), (3.10)

where Im(Ic) denotes the imaginary part of the complex integral Ic.
Miles (1957) defines a slightly different, dimensionless growth rate β , which may be

expressed in terms of the imaginary part of the complex integral Ic as

β = (c0/U1)
2Im(Ic), (3.11)

where U1 is a characteristic velocity related to the so-called friction velocity u∗ by the
relation U1 = u∗/κ , κ being the von Kármán constant taken as κ = 0.41. In this work,
all the wave growth values are presented according to the above definition of β .

4. Computational results and related discussion
4.1. Comparisons with Conte & Miles (1959)

Conte & Miles (1959) gave an accurate numerical method to compute the wave
growth rates for a logarithmic wind profile of the form

U (z) = U1 ln(z/z0), (4.1)

in which U1 is as defined previously and the roughness length z0 is determined
empirically, the most frequently used expression being given by Charnock (1955) as
z0 =αchu

2
∗/g where αch ∼ 0.011–0.018 is Charnock’s constant. Note that for the above



Rayleigh’s instability equation 71

Ω = 3 × 10−3 Ω = 1 × 10−2 Ω = 2 × 10−2

c0/U1 Conte–Miles Present work Conte–Miles Present work Conte–Miles Present work

1 3.536 3.533 3.237 3.233 2.747 2.744
2 3.414 3.412 3.302 3.298 2.928 2.925
3 3.433 3.431 3.208 3.205 2.779 2.775
4 3.431 3.428 2.966 2.962 2.427 2.424
5 3.301 3.297 2.547 2.544 1.909 1.907
6 2.975 2.971 1.965 1.963 1.288 1.287
7 2.441 2.438 1.290 1.289 0.677 0.677
8 1.750 1.748 0.646 0.647 0.223 0.224
9 1.016 1.015 0.193 0.193 0.026 0.026

10 0.405 0.405 0.018 0.018 0.00024 0.00024

Table 1. Comparisons of the dimensionless growth rate β for a range of c0/U1 values and
for three different Ω .

logarithmic wind profile the critical height zc, where the wind velocity equals the
phase velocity c0, is zc = z0 exp(c0/U1).

The computational results of Conte & Miles (1959) for the dimensionless growth
rate β were tabulated against c0/U1 for three values of the parameter Ω = gz0/U 2

1 ,
which is directly related to Charnock’s constant by Ω = κ2αch. In table 1 the wave
growth rates as obtained from the numerical approach described in § 2.2 together
with equation (3.8) and (3.11) are compared with the results given by Conte & Miles
(1959). Although both the numerical solution technique and the method of computing
the growth rates are different the overall agreement is excellent, the percentage of
maximum difference being only 0.12%. Insensitivity of the computations to the choice
of ε is also checked repeatedly to ensure the reliability of the results.

4.2. Growth rates for a different velocity profile

The approach introduced in § 2.2 allows the solution of the Rayleigh equation for
arbitrary wind profiles. By taking advantage of this general method, the effects of
different wind profiles on the wave growth rates may readily be investigated. Besides
the logarithmic profile the most commonly used wind profile is the so-called 1/7-
power-law profile, which is defined as

Up(z) = U10(z/10)1/7, (4.2)

where U10 is the wind velocity at 10 m height. Since the comparisons are to be made
with the results of the logarithmic wind profile in terms of the dimensionless paramet-
ers (c0/U1) and Ω , it is necessary to introduce slight modifications to equation (4.2)
in order to make it compatible with the logarithmic profile. It is first noted that the
dimensionless critical height kzc for the logarithmic wind profile is

kzc = Ω(c0/U1)
−2 exp(c0/U1). (4.3)

For meaningful comparisons the dimensionless quantities (c0/U1) and Ω must be the
same, which, in view of (4.3), requires kzc be the same. Equation (4.2) is then modified
as

Up(z) = U1p(z/z0 − 1)1/7 where U1p = c0/[ exp(c0/U1) − 1]1/7, (4.4)

making Up(z0) = 0 and zc = z0 exp(c0/U1) as in (4.1). In this manner, the direct depen-
dence of (4.4) on the dimensionless parameters (c0/U1) and Ω is ascertained.
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Figure 1. Dimensionless growth rate β as a function of c0/U1 for the logarithmic (�)
and 1/7-power-law (�) wind profiles: (a) Ω =3 × 10−3, (b) Ω = 2 × 10−2.

Figure 1(a, b) depicts the dimensionless growth rates as a function of (c0/U1) for
the logarithmic and the 1/7-power-law profiles for two different Ω values. Although
the growth rates for c0/U1 < 3 would not be physically meaningful, as indicated
by Conte & Miles (1959), the different characteristics of the two curves for low
c0/U1 values are noticeable. For larger values of c0/U1 the characteristics of the
curves become similar but the quantitative differences are obvious, especially for
Ω = 3 × 10−3. Since Ω is inversely proportional to the friction velocity, larger Ω values
imply smaller shearing stress velocities, hence smaller growth rates. These comparisons
clearly indicate the appreciable influence of the mean wind profile on the wave growth
rate. For reliable growth rate estimates it becomes crucial to have measured mean
wind profiles within 10 m above the sea surface. At present, the lack of alternative
wind profiles based on measurements is probably the severest obstacle to progress.

5. Conclusions
Within the context of the problem of wave generation by wind, an unconventional

approach is advanced for the solution of Rayleigh’s instability equation for arbitrary
wind profiles. Instead of attempting to develop approximate series solutions, the
method, following Rayleigh (1895), introduces plausible approximations to the
differential equation itself and transforms it to a Bessel’s equation of the first order,
which has well-known analytical solutions. As formulated, the technique is applicable
to practically any wind profile selected. The accuracy of both the solution technique
and the method of computing the wave growth rate is demonstrated for the special
case of a logarithmic wind profile used in the computations of Conte & Miles (1959).

The general applicability of the approach makes it possible to investigate the effects
of the wind profile on the wave growth rate by using wind profiles other than the
almost exclusively used logarithmic one. One such example is the 1/7-power-law
profile which exhibits appreciable differences in wave growth rates when compared
with the logarithmic wind profile. The lack of measured data on the wind speeds
within the lowest 10 m of the atmosphere, where most critical heights are located,
stands as an important obstacle in forming definite conclusions on the actual effects
of wind profile differences on wave growth rates.
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