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Abstract-A formal derivation of the improved Boussinesq equations of Madsen and Sorensen 
(1992) is presented to provide the correct forms of the depth-gradient related terms. Linear shoaling 
characteristics of the new equations are investigated by the method of Madsen and Sorensen (1992) 
and by the energy flux concept separately and found to agree perfectly, whereas these approaches 
give conflicting results for the equations derived by Madsen and Serensen (1992). Furthermore, 
Nwogu’s (1993) modified Boussinesq model is found to produce a linear shoaling-gradient identical 
with the present work. Numerical modelling of the derived equations for directional waves is 
carried out by three-time-level finite-difference approximations. A higher-order radiation condition 
is implemented for effective absorption of the outgoing waves. Several test cases are included to 
demonstrate the performance of the model. Copyright Q 19% Elsevier Science Ltd 
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NOMENCLATURE 

spatially varying wave amplitude, 
phase velocity vector (c,,c,,), 
gravitational acceleration, 
water depth from still water level, 
running index for spatial increments in x-direction, 
running index for spatial increments in y-direction, 
running index for time increments and magnitude of wave-number vector, 
wave-number vector (k&J, 
time, 
depth-averaged horizontal velocity vector (u,v), 
depth-averaged velocity component in the x-direction, 
depth-averaged velocity component in the y-direction, 
dispersion coefficient, 
surface displacement as measured from still water level, 
wavelength at the incoming boundary. 

1. INTRODUCTION 

Due to strong interactions with bottom topography, waves observed in the near-shore zone 
are almost always nonlinear and, as it is obvious from the frequent occurrence of white- 
capping and breaking, nonlinearity is usually quite high. Realistic modeling of these waves 
must therefore account for these nonlinear interactions. At present weakly-nonlinear 
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weakly-dispersive wave models, namely the Boussinesq-type models, appear to be the 
most promising ones for practical applications. These depth-integrated equations at once 
reduce a three-dimensional problem to an equivalent (within the approximations made) 
two-dimensional problem. Such a reduction in dimension provides significant savings in 
computation time as well as a certain robustness originating from the simplified numerical 
procedure. Despite these advantages the Boussinesq equations suffer from the inherent 
disadvantage of being shallow water equations. To extend their applicable range numerous 
attempts have been made (Witting, 1984; Madsen ef al., 1991; Nwogu, 1993). 

Madsen and Sorensen (1992), hereafter referred to as MS, introduced an extension of 
their improved Boussinesq equations (Madsen et al., 1991) to incorporate varying depth. 
Their procedure however was found to produce a conflicting result when applied to the 
Boussinesq equations expressed in terms of the mean velocity (Beji and Battjes, 1994) 
instead of the depth-integrated velocity as used by MS. More explicitly, when the Boussi- 
nesq equations in terms of the mean velocity are improved by MS’ technique, the transfor- 
med forms (to the depth-integrated velocity) of these equations do not agree with those 
of MS, who obtained their equations by applying the same technique to the equations 
formulated in terms of the depth-integrated velocity. Here, a formal derivation is offered 
to terminate this ambiguity. The resulting momentum equation differs from that of MS 
with respect to the depth-gradient terms which are the source of the inconsistency men- 
tioned. The correctness of the present derivation is ascertained by showing its perfect 
agreement with the constancy of energy flux. 

The wave equations are discretized via three-time-level finite-difference approximations 
so that the nonlinear terms could be treated as quasi-linear contributions. The second-order 
radiation condition of Engquist and Majda (1977) is implemented for a better absorption of 
the directional waves and found to be quite satisfactory. 

2. IMPROVED BOUSSINESQ EQUATIONS FOR SLOWLY VARYING DEPTH 

While it is perfectly allowable to replace the terms of second-order with their equiva- 
lents in the Boussinesq-type equations (see the comments in Peregrine, 1967 and Mei, 
1983, p.550 for various forms of the KdV equation) it is questionable to add the terms 
of second-order (on the premise that they are small) to such conservation equations. 
Replacing the terms of second-order with their equivalents as obtained from the first-order 
relations has its justification in the derivation process itself, as these equations are the 
result of an ordering process with respect to two parameters, E and p’, which are assumed 
to be small. Here E (= a/h) is defined as the ratio of a typical wave amplitude to the 
undisturbed depth while u (=27cwh) is basically the ratio of the undisturbed depth to a 
typical wavelength. Thus, while the process of adding some second-order terms is in 
essence of heuristic nature hence liable to inconsistencies; the process of replacing the 
second-order terms is an approximation permissible within the formal procedure and there- 
fore free of inconsistencies. Here, by performing a simple algebraic manipulation and 
replacing some second-order terms using a first-order relation we shall derive the improved 
Boussinesq equations for varying bathymetry. The present work may be viewed as a recti- 
fied version of MS’ pioneering work, producing a wave model with improved dispersion 
characteristics such that waves with wavelengths equal to depth may be represented with 
acceptable errors in amplitude and celerity. For varying depth the linear shoaling is accur- 
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ate only if depth to wavelength ratio at the incoming boundary is less than l/4, as demon- 
strated in section 4. 

We begin by recalling the Boussinesq equations for slowly varying depth (Peregrine, 
1967): 

a, + (u.V)u + gvq = f V[V.(hu,)] - ; V(V.u,) 

qt + F.[(h + Tj)u] = 0 ) (2) 

where u =(u,v) is the two-dimensional depth-averaged velocity vector, IJ is the surface 
displacement, h = h(x,y) is the varying water depth as measured from the still water level, 
and g is the gravitational acceleration. The subscript t stands for partial differentiation 
with respect to time and V for the two-dimensional horizontal gradient operator. 

By an elementary addition and subtraction process Equation (1) may be re-written as 

I(, + (u.V>u + gvq = (1 + p> ; V[V.(hu,)] - p ; V[V.(hu,)] (3) 

- (I + p> ; V(V.U,) + B ; V(V.U,) ) 

where /3 is a scalar to be determined later. Contrary to the usual practice of a full replace- 
ment, our aim here is to facilitate a partial replacement of the dispersion terms to arrive 
at a form with better dispersion characteristics. As indicated by Peregrine (1967) the form 
of the second-order (nonlinear and dispersion) terms may be varied by using the first 
order relations: 

U, + gvTJ = 0, TJt + V.(hu) = 0. (4) 

We use the first equation in Equation (4) U, = -gVq, for replacing the terms pro- 
portional to p (we could of course do otherwise and replace the terms proportional to l+ 
/3) in Equation (3) and obtain 

II, + (u.V)u + gvq = (1 + p> ; V[V.(hu,)] + p $ V[V.(hVQ] (5) 

- (1 + p> p V(V.u,) - p $ V(Vq) ) 

which is a momentum equation with mixed dispersion terms (i.e., the right-hand side 
contains the derivatives of both u and q). Note that while setting B = 0 recovers the 
original equation, p = - 1 corresponds to replacing II, with -gVq in Equation (1) (a full 
replacement of the dispersion terms). 

Equation (2) and Equation (5) then constitute the improved Boussinesq equations for 
variable depth. When compared with the derivations of similar type equations (Madsen 
and Sorensen, 1992; Nwogu, 1993) the briefness of the above procedure is remarkable. 
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The same procedure can be applied to the KdV equation as well; see the appendix for 
an application. 

Equation (5) differs from MS’ momentum equation only with respect to the depth- 
gradient terms produced by the first and second terms on the right. Although the difference 
may not appear major it is this difference that makes the present model a consistent one. 
To complete the formulation it is necessary to specify the parameter B in an appropriate 
way, which is considered next. 

3. SPECIFICATION OF DISPERSION PARAMETER 

In linearized forms Equation (2) and Equation (5) yield the following dispersion relation 

02 kh(1 + Pk%2/3) 
gk = [ 1 + (1 + B>k%2/3] ’ 

where w is the cyclic wave frequency, k2= k,‘+ ky2 and k,, k, are the components of the 
wave-number vector k in the X- and y-directions respectively. 

At this stage it should be emphasized that the dispersion relation given by Equation (6) 
is indeed identical with MS’ dispersion relation when B is set to p/3 in their formulation 
and Nwogu’s dispersion relation when a is set to -(l+ p)/3 in his formulation. Thus, by 
specifying these parameters in accord it is possible to make the dispersion relations of 
these three models identical. This in turn asserts that all these models would have identical 
group velocities as long as the dispersion parameters are specified concordantly. Basically 
there are two different ways of specifying the dispersion parameter: matching the resulting 
dispersion relation with a second-order PadC expansion of the linear theory dispersion 
relation (Witting, 1984; Madsen and Sorensen, 1992) or minimizing the errors in phase 
or group speed within a preset range (Madsen et al., 1991; Nwogu, 1993; Chen and Liu, 
1995). Since the outcome of one procedure differs only slightly from that of the other the 
choice does not make a crucial difference. Here, the first approach is preferred and j3 is 
determined from the second-order PadC expansion of the linear theory dispersion relation 
d/gk = tanhkh: 

co* kh + k3h3/15 
s= 1 + 2k2h215 ’ (7) 

which requires p =1/5 in order that Equation (6) be identical with Equation (7). This 
specification has the appealing feature of being in accord with the basic underlying deri- 
vation procedure of the Boussinesq equations that it is an asymptotic expansion near the 
long-wave limit (see also the remarks by MS). Fig. 1 compares the dispersion curves for 
B =O, - 1, l/2, l/5 (each one corresponding to a different asymptotic expansion of &/gk 
= tanhkh for small kh) with the exact expression of linear theory. Among these various 
asymptotic expansions, clearly the one corresponding to the PadC type expansion is the 
best and should be preferred. Thus, with the specification of B as l/5 the new model may 
propagate relatively shorter waves (h/h =l) with acceptable errors in amplitude and cel- 
erity. In this work B =1/5 is used throughout, which corresponds to B =1/15 in MS’ model 
and a =-2/5 in Nwogu’s model. 
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Fig. 1. Dispersion curves for various values of dispersion parameter p compared with linear theory. 

4. LINEAR SHOALING CHARACTERISTICS OF IMPROVED BOUSSINESQ 

EQUATIONS 

A linear shoaling analysis of the unidirectional versions of Equation (2) and Equation 
(5) is now carried out by using two different approaches; that is, the method proposed by 
MS, and the energy flux concept. The reason of using two different methods is to show 
that the results do agree for the equations derived here, as they must, but produce conflict- 
ing results for the equations derived by MS. The method proposed by MS is employed 
first; for further details the reader is directed to this particular reference. The linearized 
forms of the one-dimensional continuity and momentum equations are combined to obtain 
a single equation for the surface displacement: 

P 
%t - &ix,, + 3 gh3q- - 3 

(1 + P> h277 

xx*, 

= hxbn, + (1 + PPrlxt, - ~P~h2tlxnl~ 

where the subscripts denote partial differentiation with respect to the indicated variable 
as stated before. A solution of the form q = a(x) exp [i(ot--cp(x))] is then substituted 
into Equation (8). Here a(x) represents the amplitude variation due to varying depth and 
cp(x)=Jk(x)dx is the phase function which incorporates the effect of change in wave-num- 
ber. The zeroth-order terms obtained after substitution give the dispersion relation stated 
in Equation (6). The first-order terms on the other hand result in a relationship among the 
amplitude-gradient, wave-number-gradient, and depth gradient. As the final step, the linear 
dispersion relation is used to express the wave-number-gradient in terms of the depth- 
gradient so that a relationship between the amplitude-gradient and the depth-gradient may 
be established: 

_ = _ (~3 - czd k 4 

a Cl h 

in which the coefficients are given by 

c1 = 2[1 + 2pk2h2/3 + p(1 + P)k?h4/9] 

c2 = [ 1 + 2pk2h2 + 5p( 1 + p)klh4/9] 

(9) 
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c3 = [ 1 + 2(2P - l)k2h2/3 + p<1 + py&4/3] 

1 
c4 = - 

1 + (2p - l)k2h2/3 + p<1 + &k”h4/9 

2 1 + 2pk2h2/3 + p(l + P)k4h4/9 1 ’ (10) 
In Fig. 2 the variation of the shoaling-gradient coefficient (cj-czc&l as a function of 

h/h, for different values of the dispersion parameter is plotted against the exact expression 
of linear theory obtained from the constancy of energy flux using the Stokes’ first-order 
theory for the group velocity C,. As in Fig. 1, b =1/5 is the best choice; however, unlike 
dispersion characteristics, the linear shoaling is accurate only for h&.,<1/4 where h, is 
the wavelength at the incoming boundary. 

A crucial point to note in Equation (10) is that the limiting cases of p =0 (the original 
set of equations) and p =- 1 (full replacement of the dispersion term) result in the elimin- 
ation of all the fourth-order terms. This must be so because for these degenerate cases 
the dispersion relation is of an order lower in accuracy. 

The constancy of energy flux may also be used in deriving the linear shoaling-gradient 
for Equation (2) and Equation (5). The result obtained from such a derivation must be 
identical with Equation (9) and Equation (lo), if Equation (2) and Equation (5) are the 
results of a consistent derivation procedure. Let us then begin by stating the constancy of 
energy flux in the x-direction 

g (U’C,) = 0 )  (11) 

where a = a(x) is the spatially varying wave amplitude as used before and C, is the group 
velocity. The shoaling-gradient that the differential equations must possess will be obtained 
when C, derived from Equation (6) is used in Equation (11). It is now re-stated that the 
three models (the present one, MS’, and Nwogu’s) have identical C, and C, for p =1/5, 
B =1/15, and a =-2/5 as indicated before. 

10 0.25 

Fig. 2. Variation of the shoaling-gradient coefficient (c3-c,cJc, as a function of h/k,, for various values of 
dispersion parameter j3 compared with the expression according to linear theory. 
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Equation (11) may be re-expressed as 

a, -_= _ 1 (CA 
a 2 c, . 

We need to compute (C&K, from Equation 
respect to k and re-arranging give 

0 c = kh + 2pPh3/3 + p<f3 + l)k5h5/9 

g R [l + (p + l)k2h2/312 

(6). Differentiating Equation (6) with 
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(12) 

(13) 

Differentiating Equation (13) with respect to X, while noting &&IX =O, results in 

5 (C&X = 
(kh),[l + (p - l)k2h2 + p(p + l)k4h4/3 + p(p + 1)2k6h6/27] 

[I + (p + 1)k2h2/313 (14) 

Forming the ratio Equation (14)/Equation (13) gives 

CC,), _ (kh),[l + (p - l)k2h2 + p(p + l)k4h4/3 + p(p + 1)2k6h6/27] 

C, (kh)[l + 2pk2h2/3 + p(/3 + 1)Ph4/9][1 + (p + 1)k2h2/3] ’ (15) 

The final step is to manipulate the ratio (kh)J(kh) by expressing kJk in terms of hJh 
so that (kh)J(kh) may be expressed in terms of hJh. To this end first we note (kh),j(kh) 
= kJk+hJh and then use &II/& =0 to obtain 

k 1 [l + (2p - l)k2h2/3 + p(p + l)k“h4/9] h, x=-- 
k 2 [l + 2f3k2h2/3 + p(/3 + l)Ph4/9] h ’ (16) 

Using Equation (16) in Equation (15) and then substituting Equation (15) into Equation 
(12) one gets the amplitude-gradient in terms of the depth-gradient 

a, (1 + j3k2h2/3)[1 + (p- 1)k2h2 + p(j3 + l)k‘+h4/3 + p(p + 1)2k6h6/27] h, -=- 
a 4[1 + 2pk2h2/3 + p(/3 -t l)k4h4/912 h’ 

(17) 

which is the true expression obtained from the constancy of energy flux. 

0.25 

- Energy flu concept 
0 Present work 
0 Madsen and Ssrensen (1992) 

I 

Fig. 3. Variation of the shoaling-gradient coefficient of the present work and of Madsen and Serensen (1992) 
compared with the expression obtained from the energy flux concept. 
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In Fig. 3 the shoaling-gradient coefficient of Equation (17) (for p =1/5) is compared 
with that of Equation (9) and with the corresponding expression of MS. As it is seen, 
Equation (17) produces identical results (solid line) with Equation (9) (circles) while MS’ 
formulation (triangles) diverges. The exact analytical correspondence of Equation (17) with 
Equation (9) may also be established; however the algebra is complicated and therefore it 
is not repeated here. Likewise, it can analytically be shown that the expression given by 
MS is at variance with Equation (17). On the other hand, the linear-shoaling gradient 
coefficient of Nwogu’s equations is found to be identical with the present one. Compared 
with Nwogu’s equations the advantage of Equation (2) and Equation (5) is basically due 
to the conservation form of Equation (2) which is most suitable for accurate computations. 

5. NUMERICAL MODELLING 

5.1. Discretization of governing equations 
In discretizing time-dependent nonlinear partial differential equations via finite-differ- 

ence approximations a straightforward way of handling the nonlinear terms is to adopt a 
three-time-level formulation. Following this line, such an approach is employed here; both 
space and time derivatives are centered and TJ, U, v are all placed at the same grid points, 
according to the pure leap-frog method. 

To reduce the computational effort the solution process is decoupled so that only one 
variable is solved along each row or column until the entire domain is covered. The X- 
momentum equation is solved for U, the y-momentum equation for v. Such artificial 
decoupling of course necessitates some approximations and these are indicated below. 
Continuity equation does not require any additional approximation as it is possible to 
implement an explicit discretization. For brevity, only time derivatives are given in discret- 
ized forms. All spatial derivatives are approximated by centered difference formulations. 
The x-sweep equation is 

hJU::‘-U;;‘)+hh pg-uy> 
2At I 

(18) 

I 

in which the superscript k denotes the time level. Note that to improve the computational 
accuracy the nonlinear terms are re-expressed by using the irrotationality condition uY = 
v,.’ Also, the three-point-averaging formulation of Zabusky and Kruskal (1965) is used 
in the evaluation of the spatial derivatives of these terms, as it improves the robustness 
of the scheme. The new time level values vk +I s appearing on the right-hand side of Equ- 
ation (18) are treated as known by using the last computed values so that uk +‘s are the 

’ Strictly speaking this is not valid for a varying depth but an acceptable approximation. See Peregrine (1967). 
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only unknowns. The resulting matrix equation is tridiagonal and can be solved very 
efficiently by the Thomas algorithm. 

Similarly the y-sweep is 

(9 +1 - &I) 

2At 

h’(v”,’ l - v$; ‘, + hh (4’ l - vy) 
-U+P) 3 

[ 
2At Y 2At I 

= _ @g _ ;(u2 + v2); + (1 + p>; @:' - +3 
2At 

+&I +p> 
[ 
hh, 

(u;+’ - r&-l> (uk+l - w 
2At 

+ hh, A 
2At 1 

+ v&y> + Pgh (Q-i& + ; h&y + ; Q-L) 3 

(19) 

in which vk +‘s are the only unknowns. The uk +I s and subsequently vk +‘s obtained from 
respectively Equation (18) and Equation (19) are only first estimates since these variables 
are computed separately. It is therefore necessary to iterate to obtain accurate results. For 
the computational tests presented later a single iteration was found to be sufficient (no 
improvements were observed with further iterations) but more complicated problems may 
require two iterations. 

The surface displacement is obtained from an explicit discretization of the continuity 
equation: 

(7 k+l - qk-‘) 
2At 

+ [(h + q)u]:: + [(h + q)v]$ = 0. (20) 

5.2. Boundary conditions 

Boundary conditions at the rigid impermeable bottom and the free surface are automati- 
cally satisfied by the governing equations. It then remains to specify the conditions at the 
boundaries vertically enclosing the physical domain of interest. A boundary along which 
the incident wave field is introduced is quite easy to deal with. An absorbing boundary 
on the other hand is the source of a major difficulty in any numerical wave model and 
therefore requires particular attention. 

Engquist and Majda (1977) introduced a systematic approach which can produce suc- 
cessively higher-order absorbing boundary conditions. For a non-dispersive wave equation 
w,t - WXX - wYY =0 (here w represents either velocity or surface displacement) their first- 
order approach leads to the well-known Sommerfeld radiation condition which is appropri- 
ate for normally impinging waves. The second-order approximation on the other hand 
produces the following formula for waves traveling in the positive x-direction. 

1 
wrz + JQX, --w. =o. 2 >Y (21) 

At the lowest order, when combined with Equation (2), Equation (5) is equivalent to 
the non-dispersive wave equation with a wave propagation celerity c = dgh. It is then a 
plausible approximation to use the dimensional form of Equation (21) with the celerity c 



700 S. Beji and K. Nadaoka 

= dgh as the radiation condition in solving Equation (5). Thus, for waves propagating in 
the positive x-direction with the phase celerity c we employ the following radiation con- 
dition for the x-component of the velocity u(u,v): 

1 
cl,, + C& - - cZuyy = 0 . 

2 (22) 

If the waves are moving in the negative x-direction the sign in front of the second term 
reverses. The expressions corresponding to the v-component of the velocity are analogous. 

The radiation condition stated in Equation (22) is discretized by centered-differences 
in time and in the y-direction while backward-difference formulation is used in the x-direc- 
tion: 

(23) 

l (dj+l - - c2 

2 
- 2ufj + ufj-l) = o for i = n 

AY’ 
9 

where i and j label the spatial points in the x - y Cartesian system and i=n corresponds 
to a node on the boundary. Note that Equation (23) is valid for waves propagating in 
the positive x-direction. Details about the boundary conditions can be found in Beji and 
Nadaoka (1994). 

5.3. Initial condition 

All computations are started by specifying u, v and ?J over the entire domain for the 
first two time levels. Except for the ring test which is presented later as an example, the 
initial condition is the state of rest; that is, both the velocity field and the surface displace- 
ment are zero throughout the domain. 

6. NUMERICAL SIMULATIONS 

The performance of the numerical scheme described above is now illustrated for two 
selected cases. The first case is the ring test which provides a check for the symmetrical 
accuracy of the numerical model as well as allowing comparisons for the first- and second- 
order radiation conditions. A surface elevation of solitary-wave shape is initially imposed 
and then the computation is let to proceed on its due course. The initial wave height to 
depth ratio is 0.3. The computational area is 2m x2m, which is discretized by 50 points 
along both X- and y-axes. The time step is l/25 second. The left column in Fig. 4 shows 
the computational results with the first-order boundary condition at t =1/2, 1, and 2 seconds 
respectively. On the right column the corresponding results with the second-order bound- 
ary condition are depicted. As it is obvious from the surface profiles at t =2 seconds the 
first-order boundary condition is inferior, especially at the corners of the computational 
domain where the radiating wave direction makes the sharpest angle with the boundaries. 

The second case is the computation of wave convergence over a bottom topography 
that acts as a focusing lens (Whalin, 1971). The wave tank used in the experiments was 
25.6m long and 6.096m wide. In the middle portion of the tank eleven semicircular steps 
were evenly spaced to form a topographical lens. The equations describing the topography 
are given as follows (Whalin, 1971): 
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? 

Fig. 4. Ring test displayed at t =1/2, 1, 2 seconds. Left column: the first-order radiation condition, right column: 
the second-order radiation condition. 

I 

0.4572 for 0 4 x<10.67-G 

@,.v) = 0.4572 + (10.67-G-x)/25 for 10.67-G < .&18.29-G (24) 

0.1524 for 18.29-G < x d 21.34 

where 

G(y) = Ly(6.096-~)]“~ for 0 s y s 6.096, (25) 

in which all the variables are in meters. Three sets of experiments were conducted by 
generating waves with periods T =l, 2, and 3 seconds and the harmonic amplitudes along 
the centerline of the wave tank were measured at various stations. 

For all three cases the computations were performed with a span-wise resolution Ay of 
l/14 of the wave tank width. Since the bathymetry is symmetric with respect to the center- 
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line, only one-half of the tank is discretized. The no-flux boundary conditions are used 
along the centerline and the side-wall. Figure 5a compares the computed harmonic ampli- 
tudes with the measured data for the incident wave period T =l second and the wave 
amplitude a,=1.95 cm. The time-step and the x-direction resolution were At = T/35 and 

5 
x (m) 

2 
o First harmonic 1 
’ Second hammic 

-2 * Thirdharmonic 
a ‘= 

8 
-0 
8 

1 
._ 

3 
z 

x (4 
2 

o First harmonic 
’ Second harmonic 

Fig. 5. a. Whalin’s (1971) test for incident waves of T =l second. Measured and computed wave amplitudes 
along the centerline of the wave tank. Solid line: computation, scatter: experimental data; b. Same as in Figure 
5a but for incident waves of T =2 seconds; c. Same as in Figure 5b but for incident waves of T =3 seconds. 
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Fig. 6. A perspective view of the fully-developed wave field for incident waves of T =2 seconds. Corresponds 
to Figure 5b. 

Ax = &,,I25 with h,,, denoting the mean wavelength computed as the average of the deep- 
water and shallow-water wavelengths. In Fig. 5b the case for T =2 seconds and a,=O.75 
cm shown, the resolutions were At = T/35 and AX = h,,,l35. Fig. 5c gives the comparisons 
for T =3 second waves with the deep water amplitude a,=O.68 cm. Since the harmonic 
amplitudes were comparable with the primary wave amplitude, it was necessary to adopt 
somewhat higher resolutions and therefore At = T/45 and AX = h,J45 for this last case. 
Finally, in Fig. 6 a perspective view of the fully-developed wave field is depicted for T 
=2 second waves to give an idea about the wave patterns. Despite some discrepancies the 
overall model predictions agree with the measurements hence give confidence for the 
wave model. 

7. CONCLUDING REMARKS 

A formal derivation of the improved Boussinesq equations has been presented to termin- 
ate the consistency problems arising from the heuristic derivation procedure of MS. The 
present study should be viewed as a rectification of their pioneering work and an attempt 
to establish firmer grounds for the procedure of extending the applicable range of the 
Boussinesq equations expressed in terms of a conventional variable such as depth-averaged 
velocity. It is shown that the derived equations satisfy the energy considerations as well 
as being in accord with Nwogu’s modified Boussinesq equations. 

The numerical scheme introduced appears to be good both in terms of accuracy and 
computational time. Use of the three-time-level formulation not only makes it possible to 
treat the nonlinear terms in the most straightforward manner but also shortens the compu- 
tational time considerably by permitting an explicit formulation of the continuity equation 
as completely decoupled from the momentum equations. The absorption of the outgoing 
waves that approach in a multitude of directions is a delicate problem. The higher-order 
radiation condition used here is found to be reliable in simulations even with acute angles 
of wave radiation as demonstrated by the ring test. 

Acknowledgemenrs-This work was carried out while the first author was at T.I.T. through a grant from the 
Kajima Foundation of Japan and subsequently from T.I.T. The authors would like to thank Mrs. E. Tsukamoto 
for typing the manuscript and a graduate student 0. Ohno for helping with the figures. 



704 S. Beji and K. Nadaoka 

REFERENCES 
Beji, S. and Battjes, J.A. 1994. Numerical simulation of nonlinear wave propagation over a bar. Coastal Eng. 

23, 1-16. 
Beji, S. and Nadaoka, K. 1994. Numerical simulation of nonlinear directional waves by an improved Boussinesq 

model. Proc. Int. Symp. Waves-Physical and Numerical Modeling, Vancouver, Canada 1, 534-543. 
Chen, Y. and Liu, P.L.-F. 1995. Modified Boussinesq equations and associated parabolic models for water wave 

propagation. .I. Fluid Mech. 288, 351-381. 
Engquist, B. and Majda, A. 1977. Absorbing boundary conditions for the numerical simulation of waves. Math. 

Comp. 31, 629-651. 
Madsen, P.A., Murray, R. and Sorensen, O.R. 1991. A new form of the Boussinesq equations with improved 

linear dispersion characteristics. Coastal Eng. 15, 37 l-388. 
Madsen, P.A. and Sorensen, O.R. 1992. A new form of the Boussinesq equations with improved linear dispersion 

characteristics. Part 2: A slowly-varying bathymetry. Coastal Eng. 18, 183-204. 
Mei, C.C. 1983. The Applied Dynamics of Ocean Surface Waves (740 pp.). John Wiley and Sons. 
Nwogu, 0. 1993. Alternative form of Boussinesq equations for nearshore wave propagation. J. Waterway, Port, 

Coastal, and Ocean Eng. 119, 618-638. 
Peregrine, D.H. 1967. Long waves on a beach. J. Fluid Mech. 27, 815-827. 
Whalin, R. W. 1971. The Limit of Applicability of Linear Wave Refraction Theory in a Convergence Zone. Res. 

Rep. H-71-3, U.S. Army Corps of Engrs, Waterways Expt. Station, Vicksburg, M.S. 
Witting, J.M. 1984. A unified model for the evolution of nonlinear water waves. J. Comp. Phys. 56, 203-236. 
Zabusky, N.J. and Kruskal, M.D. 1965. Interaction of solitons in a collisionless plasma and recurrence of initial 

states. Phy, Rev. Left. 15, 240. 

Consider the KdV equation: 
APPENDIX 

where co=(gh)“* is the non-dispersive wave celerity. Equation (Al) may be rewritten as 

in which p is for the time being an undetermined parameter. We use the linearized non-dispersive 
form of the KdV, qt + coq, =O, to replace the last term in Equation (A2) Q, = -c,~~~ and obtain 

17, + Co% + 2 rlrlx - (1 + P) ; L - pco;ll_=o. (A3) 

The linear dispersion relation corresponding to Equation (A3) is 

w @( 1 + pk2h2/6) 
_- 
&j - [ 1 + (1 + p)k*h*/6] . (A4) 

The second-order Pad6 expansion of m/(gk)“*=(tanh kh)“’ reads 

jkh(l+ 
$=&= jl+2kzltz15 = 

$&l + k2h2/30) 

1 + k*h*/S (A9 

where use has been made of the approximation (1+5)“2 ^- le2 (for small 5) in evaluating the 
square roots. In order that Equation (A4) be identical with Equation (A5), p must be l/5. With this 
specification, the new KdV equation Equation (A3) has better dispersion characteristics. 


