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A weakly nonlinear and dispersive water wave equation, which in linearized form
yields a new version of the time-dependent mild-slope equation of Smith & Sprinks
(1975), is derived. The applicable spectral width of the new wave equation for random
waves is found to be more satisfactory than that of Smith and Sprinks (1975). For
very shallow depths the equation reduces to the combined form of Airy’s nonlinear
non-dispersive wave equations; if the lowest-order dispersion is retained it produces
the combined form of Boussinesq’s equations. In the deep-water limit the equation
admits the second-order Stokes waves as analytical solutions. Furthermore, by in-
troducing a right-moving coordinate transformation, the equation is recast into a
unidirectional form, rendering the KdV equation in one limit while reproducing the
second-order Stokes waves in the other.

1. Introduction

Since its first introduction more than two decades ago the mild-slope equation of
Berkhoff (1972), or in more general time-dependent form Smith & Sprinks’s (1975)
equation, has gained a justified popularity in modelling coastal wave phenomenon,
specifically the combined refraction and diffraction effects. During this period, on
the one hand, further theoretical development of this equation, and, on the other
hand, efficient numerical modelling of its various forms (see Panchang et al. 1991)
have accumulated a considerable literature. Radder (1979) introduced the so-called
parabolic approximation to Berkhoff’s equation for computational efficiency. Liu &
Tsay (1983) improved on Radder’s work to account for the back scattered waves.
An extended version of the time-dependent mild-slope equation which included the
effects of rapidly varying depth undulations was derived by Kirby (1986). Cham-
berlain & Porter (1995) developed a modified mild-slope equation which contained
Berkhoff’s and Kirby’s equations as special cases. Recently, Porter & Staziker (1995)
have derived a jump condition for a bed profile with discontinuous slope and extended
Chamberlain & Porter’s modified mild-slope equation to a higher-order approxima-
tion.

As the role of nonlinear effects received increasing appreciation, inclusion of non-
linearity in wave models became a desirable prospect. Kirby & Dalrymple (1983)
introduced a parabolic model with cubic nonlinearity, which was a general form of
the equation given by Yue & Mei (1980). For weakly nonlinear Stokes-type waves Liu
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& Tsay (1984) developed a model in the form of a nonlinear Schrédinger equation
with variable coefficients. Nonlinear refraction-diffraction of shallow water waves was
treated by Liu et al. (1985) using the Boussinesq equations and the KP (Kadomtsev
& Petviashvili) equation in connection with the parabolic equation method.

The aim of the present work is to combine the single-term forms of quite general
fully dispersive weakly nonlinear wave equations introduced by Nadaoka et al. (1997).
The linearized form of the combined equation can be put into the time-dependent
form of the mild-slope equation and thus in its full form it may suitably be called
a time-dependent nonlinear mild-slope equation. For incident wave frequencies dif-
ferent from the prescribed wave frequency of the model the linearized form of the
proposed equation shows better dispersion characteristics than Smith & Sprinks’s
(1975) equation does, as is demonstrated here.

The following section states the continuity and momentum equations constituting
the single-term forms of the wave equations by Nadaoka et al. (1997) and combines
these equations into a single one. In §3, Smith & Sprinks’s (1975) time-dependent
mild-slope equation is recovered from the linearized form of the new equation and
the dispersion characteristics of these equations are compared. The degenerate forms
of the new wave equation for shallow and deep water are worked out in §4. Section
5 introduces a coordinate transformation to derive a one-way propagation model,
which is, from the computational point of view, very attractive. Section 6 examines
the degenerate forms of this equation, showing in particular that it corresponds to
the KdV equation for shallow depths and admits the second-order Stokes waves
as analytical solutions in deep water. In §7 the performance of this unidirectional
one-way wave equation is demonstrated by various numerical simulations. The last
section is devoted to concluding remarks.

2. A time-dependent nonlinear mild-slope equation

Quite recently, Nadaoka et al. (1997) introduced a set of fully dispersive weakly
nonlinear wave equations describing wave transformations over varying depth. These
equations in their most general form are composed of several depth-dependence func-
tions, each contributing to the dispersivity of the full set. More importantly, the
applicable range of the single-component model (i.e. the wave equations derived
from a single depth-dependence function) is not confined to the prescribed wave-
number itself but to a narrow band of wave-numbers centred around this particular
wave-number, as in the time-dependent mild-slope equation. This enhancement in
dispersivity is brought about by the application of the Galerkin procedure, which
may also be interpreted as the solvability condition invoked in derivation of slowly
modulated wave envelope equations, such as the nonlinear Schrodinger equation (see
for instance Mei 1983, p.611).

Considering the fact that a narrow-banded sea state centred around a certain
dominant wave frequency may be described with sufficient accuracy by the single-
component model equations it becomes a justifiable action to pay further attention
to these equations in order that they may be put into convenient forms to render
further theoretical and practical aspects. Nadaoka et al. (1997) give the following
continuity and momentum equations as the single-component wave model, correct
to the second order in nonlinearity:

e+ V- ch+7]> u] =0, (2.1)
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CpCyuy + C2V [gn + nwy + 5 (u - u+ w?)]

_ Wv(v ) + V [CP(CI’;Q_CQ)] (V- uy), (2.2)

where 7 is the free surface displacement, u(u,v) the two-dimensional horizontal ve-
locity vector and w the vertical component of the velocity both at the still water
level z = 0. C}p, Cy and k are, respectively, the phase and group velocities, and wave-
number computed according to linear theory for a prescribed dominant frequency w
and a local depth h. g is the gravitational acceleration, V stands for the horizontal
gradient operator with components (9/9x,d/dy), and subscript ¢ indicates partial
differentiation with respect to time. Note that (2.1) and (2.2) are formulated for
varying depth and therefore C),, Cy, and k are in general spatially varying quantities.

The objective here is to combine (2.1) and (2.2) into a single nonlinear wave
equation describing the evolution of 7 in time and space. A perturbation procedure
is used, which in essence serves as a simple tool to replace the nonlinear and linear
shoaling terms with their approximate equivalents as obtained from the linearized
equations. In this procedure a more general nonlinearity parameter ga/ C]f (Beji 1995)
may be used as the small expansion term instead of one of the classical definitions
ka or a/h. The parameter ga/C} embodies both ka and a/h as its special cases
respectively for C7 = g/k (deep water) and C = gh (shallow water) and there
remains no ambiguity about its applicable range. This important feature accords well
with (2.1) and (2.2) which are valid at arbitrary depths. Actually, a suitable non-
dimensionalization of (2.1) and (2.2) also yields the same nonlinearity parameter.
For the present purposes however such a small non-dimensional parameter may be
regarded as a bookkeeping device indicating the relative significance of the terms and
therefore, for notational convenience, it may be used to label not only the nonlinear
terms but also the linear shoaling terms (i.e. the terms proportional to the gradients
of Cp, Cy and k). Thus, equations (2.1) and (2.2) are rewritten as

2

N + Cg”’(V ‘u) 4+ eV <C;> ‘u+eV- (nu) = 0(?), (2.3)

CpCyuy + C2V [gn + enwy + 3¢ (u - u + w?)]

GG O (5. o [

L2
where € is a small non-dimensional parameter labelling the nonlinear and linear
shoaling terms.

Let us introduce the following perturbation series for the surface displacement and
velocity field:

] (V-u;) =0(?), (2.4)

n=mno+em +einp+...,
u=1uy+eu +eus + ..., (2.5)
w=wy + cwy + 2wy + .. ..

Substituting these expressions into (2.3) and (2.4) and collecting the terms of like-
order result in

Cc? C? C?
n0t+?p(v-u0)+s Nt + ?p(v “up) +V <gp> “ug + V- (mouo) | = O (52) , (2.6)
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c,(c,-C
C,Cyug; + gC’ﬁVng - %V(V “Uot)
c,(C,—-C
+e {CPC’gult =+ gC'ng — %V(V . ult)}
c,(c,—-C
te {c;v mottor + L (o - o + )] — ¥ [W} v u0t)} —0(2).

2.7)

For the zeroth-order equations seeking periodic solutions 79 = ag - exp [i(k - & £ wt)]
and ug = by - exp [i(k -  + wt)] (here @ = (z,y) is the horizontal position vector, aqg

and by are arbitrary scalar and vectorial constants, and i* = —1) yields
2 722 _ 9 _ 9
w=k"C,, wug= :F;kno = I{:TCgvnOt’ (2.8)

where the bold face k is the wave-number vector. The F sign in the second equation
does not cause any ambiguity as that particular approximation is used to evaluate
the nonlinear term ug - ug only, and the last expression is used in evaluating noug. To
a first approximation the vertical component of the velocity at the still water level wq
is 1o, as dictated by the kinematic boundary condition. Then, using equation (2.8),
the linearized kinematic boundary condition and the linearized continuity equation
it is possible to express all the nonlinear and linear shoaling terms appearing in (2.6)
and (2.7) as follows.

2

9 .
Ug - Uy = @Uga wi = (no)® = (Fiwno)? = —k*C2ng,
P
NWotr = NMott = —k2012,7787 ToUo = kQLCQUOVUOt, V- ug = —%ﬁom = gk*no.
p p

(2.9)
At this stage it is possible to facilitate perturbation solutions by treating the above
zeroth-order expressions as known and using them in (2.6) and (2.7). However, our
aim is not to construct weak perturbation solutions but to derive a nonlinear wave
equation that can describe the wave evolutions under various incident wave con-
ditions. To do this it is necessary to diverge from the usual perturbation analysis
and go back to equation (2.5) for expressing the zeroth- and first-order quantities in
terms of the original variables:

m+em =n+0(), en=en+0(e?),
ug+eu; =u+ 0 (e2), eug=cu+0(?), (2.10)
wo+ewy =w+ 0 (%), ewy=cw+ O (e?),

Using (2.9) in (2.6) and (2.7) for the terms proportional to ¢ and employing the
expressions in (2.10) yields

c2 v (C2)

g
ek V) e Vit eV (V) =0 (). (211
C,Cyuy + gcﬁvn _ Mv(v - uy)

k2

24

k
+1ieg® (1 -3 92p> V(n°) —eg
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Note that the perturbation technique serves simply as a device for establishing ap-
proximate replacements for the terms O(g). Some comments on the nonlinear term of
(2.12) are warranted. The term is made up of three different contributions; namely,
the terms proportional to w - u, w? and nw,. The first of these is directly propor-
tional to 1%, the last two terms are important only in deep water and therefore both
have the coefficient k*C;/g?, which tends to unity in deep water (C) = g*/k?) but
negligibly small in shallow water (C; = g*h?).

The next step is to eliminate the inertia term from the momentum equation by per-
forming cross-differentiations as it is not permissible to use the approximate zeroth-
order relations for replacing the zeroth-order terms themselves. The algebra involved
is lengthy but straightforward and therefore it is sufficient to give an outline only.
Multiply (2.12) by C,/gC, and take the divergence of the resulting equation, noting
that C),, C, and k are all spatially varying quantities. Differentiate the continuity
equation with respect to time and use it to replace the inertia term appearing in the
equation obtained in the previous step. The result is

CS 2 Cp (Cp — Cg) 2
1C, I€2C§ 9/ 9 CZ(Cp —Cy) 2 _ 2

(2.13)

where the zeroth-order relations have been invoked in re-expressing the linear shoal-
ing terms.

The final step is to express the last term in (2.13) in terms of the surface displace-
ment. Differentiating (2.11) with respect to time and then applying the gradient
operator twice give the desired expression that can be used in (2.13) to obtain

c,—C
Cynu — CVn — (’Jlﬁ%v%t — C,V(C,Cy) - Vi
) C k204
340, (3 -2t - g;’) V2 (1) = 0, (2.14)

in which the bookkeeping parameter € has been removed from the nonlinear and
linear shoaling terms and O(e?) is set to zero. Equation (2.14) can describe the
combined effects of nonlinear refraction and diffraction on a specified incident wave
field as it propagates over gently varying depth. A three-time-level centred finite-
difference scheme can be adopted for the numerical solution of the one-dimensional
form of (2.14). For the directional case, it is again possible to use a similar scheme
by introducing an iterative approach. Demonstrative numerical simulations will be
reported separately.

3. Applicable band-width of wave equations

In linearized form (2.14) is not identical with the time-dependent form of the
mild-slope equation of Smith & Sprinks (1975); however, it can be manipulated into
the conventional form of the mild-slope equation. First, drop out the nonlinear term
and divide the equation by C,. Replace the time derivatives of the dispersion term
(the third term) by —w? = —k>C? so that it becomes Cy,(C, — Cy)V?n and can be
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combined with the second term to produce —(C,C,)V?n. Finally, re-write Cyny,/C)
as Ny — (1 — Cy/Cp)nu, which, after replacing the second 7, with —w?n, becomes
M + w?(Cp — Cy)n/C,. The resulting equation is then

N + w” (C'pCCg) n—V(Cp,CyVn) =0, (3.1)

P

which is the mild-slope equation in its time-dependent form as proposed by Smith
& Sprinks (1975). In view of this correspondence it should be appropriate to name
equation (2.14) as the time-dependent nonlinear mild-slope equation.

Since the linearized form of (2.14) is not the same as Smith & Sprinks’s equa-
tion it is expected that the dispersion characteristics of the two equations should
differ. Considering for simplicity only the one-dimensional case and an incident wave
with an arbitrary wave-number k, and a corresponding phase celerity C,, it is quite

straightforward to obtain the following relations for the linearized forms of (2.14)
and (3.1) respectively:

ka
C? = Cg/ {Cg + 75 (C,—C,)|, (3.2)
2 kQ
C? =C,C,+ ﬁcp(cp - C,), (3.3)

where C),, C, and k are the phase and group velocities and the wave-number pre-
scribed a priori in equations (2.14) and (3.1) for a fixed dominant frequency w while
ko is the arbitrary wave-number which is free to take on any value ranging from
zero to infinity. Figure 1la shows the relative phase velocity errors for equations (3.2)
and (3.3) for a prescribed k£ which corresponds to shallow water waves (kh = 1).
The exact phase speed (C, ). for the arbitrary wave-number k, is computed from the
linear theory dispersion relation (C,). = (g/k, tanh k,h)'/2. A similar comparison is
made in figure 1b for a prescribed k which corresponds to deep water waves (kh = 5).
When k, is equal to the prescribed £ in (3.2) and (3.3) the agreement is perfect but
as the difference between k, and k gets larger the approximation becomes poorer.
Regardless of the selected k the conventional mild-slope equation exhibits very unde-
sirable properties as k, tends to zero. For shallow water waves, as is seen in figure la,
equation (2.14) has very broad applicable spectral width, ranging from zero to the
wave-numbers as much as three times the prescribed wave number k. Although for
deep water waves the equation is good in a somewhat narrower range it is still better
than the conventional mild-slope equation, as figure 1b reveals.

4. Degenerate forms of time-dependent nonlinear mild-slope equation

We shall now consider the special forms of (2.14) when the water depth is relatively
shallow and deep. Let us begin with the case of very shallow water so that C, ~
C, ~ (gh)/?. Introducing this approximation to (2.14) results in

e =gV - (hVn) + %sz(UQ), (4.1)

which may be shown to be the combined form of Airy’s non-dispersive nonlinear wave
equations for varying depth, correct to the second-order in nonlinearity. Note that in
evaluating the coefficient of the nonlinear terms we have neglected the contribution
of k*C}/g* as it is quite small for shallow depths. Equation (4.1) does not seem to
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Figure 1. (a) Percentage of the phase speed errors for the present wave equation (o) and the
time-dependent mild-slope equation () of Smith & Sprinks (1975) in the vicinity of a prescribed
wave number k which corresponds to relatively long waves (kh = 1). Note when k, = k the
agreement is perfect for the both equations. (b) Same as in figure la but for a prescribed
wave-number k which corresponds to deep water waves (kh = 5).

have been stated before but it is a trivial exercise to obtain it from Airy’s equations
by following the procedure used in constructing (2.14) from (2.1) and (2.2).
Retaining the lowest-order dispersion in C, and C, should result in the Boussi-
nesq equation. Although not commonly used, the combined (singular) form of the
Boussinesq equations for a constant depth has been given in the original work as
reviewed by Miles (1980). Taking the first two terms of the Taylor series expansion
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of the exact linear theory dispersion relation

Cp = (gh)'? (1 - 1k°R?), Cy =~ (gh)'/? (1 — LK*R?), (4.2)
substituting these approximate expressions in (2.14) and invoking the zeroth-order
relation 7y = —w®n = —k*C’n = C2V?7 in the dispersion term, one obtains

me = ghV>n + 1gh®V? (V1) + 2gV7 (), (4.3)

in which the higher-order dispersion terms O(k*h?*) have been neglected in accor-
dance with the classical Boussinesq approximations. In its one-dimensional form
equation (4.3) is the same as the combined Boussinesq equation for constant depth
(Miles 1980).

For deep water waves C, =~ (g/k)'/? and the group velocity is half the phase
velocity C, ~ C,,/2. Equation (2.14) in this case reads

1
Nt = Q%VQU + ﬁv%tt + 3gV? (772) ) (4.4)

where the linear shoaling term has been dropped out. In the literature it is not
possible to find a corresponding equation; however, any second-order nonlinear wave
equation for deep water waves must be able to produce the second-order Stokes
waves. This can be checked fairly easily by seeking a solution of the form n = a -
cos[(k-x +wt)] + b - cos[2(k - x + wt)]. Substituting this expression in (4.4) and
retaining the nonlinear terms up to O(g2?) give, respectively, for the zeroth- and
first-order terms

wr=gk, b= %k‘az, (4.5)
proving that (4.4) admits the second-order permanent Stokes waves as analytical
solutions. Note the waves need not propagate in a direction parallel to a horizontal
axis; the solution is valid for arbitrary propagation directions. While the second-
order Stokes waves possess no amplitude dispersion the evolution equation (4.4) and
its general form (2.14) always give rise to amplitude dispersion because of the n?
term which generates interacting higher harmonic components from the initial wave
form n =a-cos|[(k-x +wt)]+b-cos[2(k - x + wt)]. For this reason, the solutions of
such evolution equations produce partially correct higher-order amplitude dispersion
effects. Considering this point, in § 7, the numerical solutions are compared with the
third-order phase celerity of the Stokes theory.

5. A one-way propagation wave model

While equation (2.14) in its present form is quite suitable for any numerical mod-
elling of certain wave phenomenon of interest there are possibilities of elaborating it
further, such as considering the unidirectional propagation in the positive x-direction
only. The reason for taking up the analysis of such a simplified case lies in the at-
tractive form of the KdV equation, which will be recovered as a special case. Let us
begin with the one-dimensional form of (2.14):

C,-C
antt - anmx - %729)7%1& - Cp(Cng)znm
c, kC,
—39C, (3 - 252 - ggp) (7*) ,, =0 (5.1)
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Introduce a new coordinate system (o, 7) moving in the positive z-direction with
the phase speed C), so that evolutions of the wave form in time is slow, permitting
us to write (Mei 1983, p. 549)

c=x—Cyt, T=c¢t, (5.2)

where ¢ is a small parameter signifying the slow changes of wave form in this moving
coordinate system. Expressing (5.1) in the new coordinate system, rearranging, and
dropping the terms O(g?) as being higher-order than we intend to retain result in

Cc2(C, — C,)
_2601)05]7707' - C§<Cp - Cg)ﬁa’a - %naoaa
C,(C, —C,
e DG Gl 10,040 - G,

c,(C, —C, c, kG,
_E%(CP)U%W _ %Egcp (3 _ 207; — 92p> (772)00 =0, (5.3)

where the terms proportional to the spatial derivative of the phase and group speeds
are also labelled by € to emphasize that they are an order smaller compared with
the zeroth-order relations.

The form of (5.3) suggests an integration with respect to o; however it cannot
be done by simply removing a subscript from each term because C,, Cy and k are
all spatially varying quantities and therefore they must be treated with due care in
such an integration. The terms proportional to € need not be considered since any
variation of C,, Cy and k in these terms can be neglected as being higher-order. The
zeroth-order terms on the other hand require the care we indicated. Observing this
precaution, the integration of (5.3) with respect to o gives

—2eCpConr — Cz% (Cp = Cy)no + 25W77057
Cg(cp - Cg) [3Cp(cp - Cg)(cp)a + C;%(Cp - Cg)a]
772770'0'0' € B Noo
k k
C k2C?
+eC, [3C7 = 2(C,Cy)] n — 5e9C,y (3 ~220 - g;’) (), =0. (5.4)
P

The coordinate transformation has served its purpose of extracting a wave equation
for the right-moving waves from the one-dimensional equation (5.1) and the inverse
transformation may now be carried out to go back to the usual fixed coordinate
system. The inverse transformations for 7., en,, etc., may be constructed easily
with the help of (5.2) and are skipped here. In the original fixed coordinate system
equation (5.4) becomes

(Cp — Cg) Cp(Cp — Cg)

Cyme + %Cp (Cp+Cy)nz — 52 Naat 2%2 Nexax

1 3 Cy kQCg 2
HAGHC). +(Cy = CCIn+ 30 (3288 - 22 ) (1), =0, 69
in which the linear shoaling terms are collected together by using the zeroth-order
relation 7,, = —k?n.
Equation (5.5) describes the weakly nonlinear wave evolutions of a narrow-banded
unidirectional wave field centred around the dominant wave frequency w = kCj,.
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There is no restriction on the depth these waves must travel, it may range from
nearly zero to infinity. The equation also models the linear shoaling in exact form
(for monochromatic waves with w = kC,,) so long as the second and higher derivatives
and squares of derivatives of the phase and group velocities (or the bottom slope)
are negligible. All the degenerate forms of (2.14), when reduced to the unidirectional
forms, are equally applicable to (5.5) as well. Let us briefly examine them for the
sake of completeness.

6. Degenerate forms of one-way propagation model

For very shallow water waves the phase and group velocity are nearly the same
and C, ~ C, ~ (gh)'/2. When this approximation is used in (5.5) it becomes a
nonlinear, non-dispersive wave equation, which may be recognized as the combined
unidirectional form of Airy’s nonlinear shallow water equations:

he 3,
o = = 1
where Cy = (gh)'/2. Inclusion of a weak-dispersion effect in C, and C, as given
in (4.2) produces the KdV equation for a gently varying depth:

o hy h? 3 5
e + 0|:77x+4h77+677mm+4h(77 )w:|—0. (6. )
The dispersion term need not be in the form given above; various alternatives are
possible by using the zeroth-order relations as enumerated in Mei (1983). Indeed (5.5)
produces a KdV equation containing both 7,,; and 7n,,, as dispersion terms. The
equation has been manipulated into the more familiar form given in (6.2).

If the depth, relative to the wavelength, is large C, ~ (g/k)!/? and C, ~ C,/2.
For this special case equation (5.5) becomes

3 1 1 3
C Sl T To .~ llzxt T 579 'lzzx -k 2 = 07 6.3
Mt Cp |5l = o et~ gpalleae + g (%), (6.3)
which may be shown to admit the unidirectional second-order Stokes waves as ana-
lytical solutions.

7. Numerical simulations

The form of equation (5.5) permits the use of standard finite-difference techniques
of solving the KdV-type equations. A three-time-level implicit scheme appears to
be the best choice as it reduces the handling of the nonlinear term to a quasi-linear
form and allows relatively large spatial and time steps. The resulting discretized equa-
tions constitute a tridiagonal matrix, requiring the incoming and outgoing boundary
conditions be specified in the first and last rows, respectively. Care should be ob-
served in discretizing 7., at the node next to the incoming boundary, otherwise
accurate propagation of waves is hindered considerably. In the present scheme this
was accomplished by simply invoking the zeroth-order relation 7,, = —k?n so that
Neze = —k>1,, which proved to be a very good approximation even for incident waves
of limiting height. The initial condition used in all the computations presented here
was the state of rest, which was imposed by setting the first two time level values
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Figure 2. Cnoidal wave simulations. Wave parameters are selected from experimentally repro-
duced cnoidal wave forms (Goring & Raichlen 1980): analytical expression (-) and numerical
solution of the unidirectional wave model (o).

to zero throughout the computational domain. It is of course possible to commence
a computation from a different initial configuration by setting the first two time
level values in accordance with the desired initial condition. The prescribed time-
dependent boundary data is introduced into the computational domain by setting
the new time level value of the first node to the specified surface displacement at
each time step. Overall, the resulting scheme has been found to be quite robust and
accurate.

The first case is the simulation of cnoidal waves. Since physically realizable per-
manent cnoidal waves exist only for definite H/h, h/L and m values (H: wave
height, h: water depth, L: wavelength and m: elliptic parameter) three sample wave
forms from Goring & Raichlen’s (1980) experiments were selected: H/h = 0.05,
m=1-2.15x 107! (CN2); H/h = 0.1, m = 1 —5.21 x 1072 (CN3); H/h = 0.2,
m=1-5.38 x 1073 (CN4) with h/L = 0.05 for all the cases. The time and spatial
resolutions were At = T/35, Az = L/35; the computations were done for 15 wave
periods, allowing the wave field to develop fully in the entire computational domain.
As is seen from figure 2 the model simulations show excellent agreement with the
theory and clearly prove the ability of the proposed wave equation to propagate
permanent cnoidal waves.

The Stokes waves are the deep water counterpart of cnoidal waves and may be
simulated equally accurately by the present wave model. Figure 3 depicts three cases
for Stokes-type waves with different kH and h/L values which vary from relatively
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Figure 3. Second-order Stokes wave simulations. Wave parameters are selected from experimen-
tally reproduced Stokes-type waves (Morrison & Crooke 1953): Stokes’s second-order solution
(-) and numerical solution of the unidirectional wave model (o).

deep to shallow depths. These cases are selected because they were reproduced in the
laboratory experiments (Morrison & Crooke 1953) and found to agree well with the
analytical solutions. Note the last case (h/L = 0.16) corresponds virtually to shallow
water waves; it delineates the applicable limit of the Stokes theory according to
Morrison & Crooke’s experiments. In the numerical simulations the spatial and time
resolutions and the simulation duration were taken to be the same as the previous
case. The agreement of the numerical solution of (5.5) with the theoretical solution
and consequently with the experimental measurement for each case is remarkably
good, regardless of the kH — h/L value. Small phase discrepancies are due to the
use of the third-order Stokes wave celerity in the analytical solutions. This point has
been discussed in §4 in some detail.

The linear shoaling characteristics of (5.5) are checked for uniformly varying depth
with a constant slope of 1:50. The water depth in the deep section is 30 m and after
a distance of 1000 m it reduces to 10 m. Incident waves of sinusoidal form for three
different periods, which correspond respectively to deep, intermediate and shallow
water cases, are imposed at the incoming boundary. The initial wave amplitude is
taken as 1 m for simplicity. In figure 4, the variation of wave amplitude for each case,
computed according to the constancy of energy flux (linear theory), is compared with
the numerical results obtained from the linearized version of (5.5). The agreement is
almost perfect; this is to be expected because it can analytically be shown (see the
procedure devised by Madsen & Sgrensen, 1992) that the linearized version of (5.5),
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Figure 4. Demonstration of the linear shoaling characteristics of equation (5.5) for varying depth
with a constant bed slope of 1:50. Incident waves are sinusoidal with initial amplitude 1 m at
30 m water depth. For each case, variation of the wave amplitude with distance is computed
according to the constancy of energy flux (-) and compared with numerical solution of the
unidirectional wave model (o).

like (2.14), incorporates exact linear shoaling for gentle slopes when the incident wave
frequency coincides with the prescribed frequency of the model. Additional tests with
steeper slopes, such as 1:25, and with curved bathymetry have further confirmed the
accuracy of the model; however these comparisons had to be excluded due to space
limitations.

Finally, it is worthwhile to emphasize that the applicability of the model equa-
tions is not restricted to periodic waves; narrow-banded random waves may also be
simulated accurately. Such computations will be reported separately.

8. Concluding remarks

A nonlinear-dispersive wave equation, named as the time-dependent nonlinear
mild-slope equation, has been derived. The degenerate forms of this equation yield
all the well-known linear and nonlinear wave equations and in deep water the equa-
tion admits the second-order Stokes waves as analytical solutions. The unidirectional
form of the model equation also retains all the nonlinear characteristics of its generic
and likewise embodies the existing linear and nonlinear wave equations in its class
as special cases. A further extension of this work would be the derivation of a KP-
type equation for weakly nonlinear weakly directional waves over arbitrary depths
by retaining a weak-directionality in the one-way wave propagation model.

This work was carried out while the first author was at TIT through a grant from the Kajima
Foundation of Japan and subsequently from TIT. The authors thank Mrs E. Tsukamoto for
typing the manuscript and a graduate student O. Ono for helping with the figures. The paper
has benefited considerably from the extensive comments of an anonymous reviewer.

Proc. R. Soc. Lond. A (1997)



332 S. Beji and K. Nadaoka

References

Beji, S. 1995 Note on a nonlinearity parameter of surface waves. Coastal Engng 25, 81-85.

Berkhoff, J. C. W. 1972 Computation of combined refraction-diffraction. In Proc. 18th Int. Conf.
on Coastal Engineering, vol. 1, pp. 471-490.

Chamberlain, P. G. & Porter, D. 1995 The modified mild-slope equation. J. Fluid Mech. 291,
393-407.

Goring, D. & Reichlen, F. 1980 The generation of long waves in the laboratory. In Proc. 17th
Int. Conf. on Coastal Engineering, vol. 1, pp. 763-783.

Kirby, J. T. 1986 A general wave equation for waves over rippled beds. J. Fluid Mech. 162,
171-186.

Kirby, J. T. & Dalrymple, R. A. 1983 A parabolic equation for the combined refraction-
diffraction of Stokes waves by mildly varying topography. J. Fluid Mech. 136, 453-466.

Liu, P. L.-F. & Tsay, T.-K. 1983 On weak reflection of water waves. J. Fluid Mech. 131, 59-71.

Liu, P. L.-F. & Tsay, T.-K. 1984 Refraction-diffraction model for weakly nonlinear water waves.
J. Fluid Mech. 141, 265-274.

Liu, P. L.-F., Yoon, S. B. & Kirby, J. T. 1985 Nonlinear refraction-diffraction of waves in shallow
water. J. Fluid Mech. 153, 185-201.

Madsen, P. A. & Sgrensen, O. R. 1992 A new form of the Boussinesq equations with improved
linear dispersion characteristics. 2. A slowly-varying bathymetry. Coastal Engng 18, 183-204.

Mei, C. C. 1983 The applied dynamics of ocean surface waves. (740 pp.) Chichester: Wiley.
Miles, J. W. 1980 Solitary waves. A. Rev. Fluid Mech. 12, 11-43.

Morrison, J. R. & Crooke, R. C. 1953 The mechanics of deep water, shallow water, and breaking
waves. U.S. Army, Corps of Engineers, Beach Erosion Board, Tech. Memo. No.40.

Nadaoka, K., Beji, S. & Nakagawa, Y. 1997 A fully dispersive weakly nonlinear model for water
waves. Proc. R. Soc. Lond. A 453, 303-318. (Preceding paper.)

Panchang, V. G., Pearce, B. R., Wei, G. & Cushman-Roisin, B. 1991 Solution of the mild-slope
equation by iteration. Applied Ocean Res. 13, 187-199.

Porter, D. & Staziker, D. J. 1995 Extensions of the mild-slope equation. J. Fluid Mech. 300,
367-382.

Radder, A. C. 1979 On the parabolic equation method for water-wave propagation. J. Fluid
Mech. 95, 159-176.

Smith, R. & Sprinks, T. 1975 Scattering of surface waves by a conical island. J. Fluid Mech. 72,
373-384.

Yue, D. K.-P. & Mei, C. C. 1980 Forward diffraction of Stokes waves by a thin wedge. J. Fluid
Mech. 99, 33-52.

Received 24 October 1995; revised 1 April 1996 and 24 June 1996; accepted 9 July 1996

Proc. R. Soc. Lond. A (1997)



