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The discussion of Scha¨ffer and Madsen is appreciated for providing an opportunity to
clarify some definite points which were only briefly mentioned in Beji and Nadaoka
(1996). More importantly, their inquiries have led us to new conclusions regarding Boussi-
nesq equations in general and Nwogu’s equations (Nwogu, 1993) in particular. It is there-
fore expected that most of the questions about all these equations may now be settled satis-
factorily.

1. PARTIAL REPLACEMENT VERSUS ADDITION

We would first like to clarify the fundamental differences between BN’s partial replace-
ment method and MS’s addition method (Madsen and Sørensen, 1992). It must be emphas-
ized that the formalism of the two approaches is not equivalent; there is a subtle but very
distinct difference between the two. Indeed, if they were the same the results would not
differ in the first place.

BN’s procedure leads to asinglepossible form for the improved model, dictated entirely
by the rules of mathematical physics. The modelcannotbe shaped beforehand according
to particular aims; the outcome is, just like any formal derivation, determined by the
formalism alone.

MS’s procedure, on the other hand, allowsany possible form for the improved model
as long as the added terms are second-order and dimensionally correct. Thus, the model
can be shaped beforehand according to specific choices. The model of Scha¨ffer and
Madsen (1995) is the ultimate product of this approach, from whichanyBoussinesq model
is recovered with the further aid of the shoaling parameter, which compensates for the
differences arising in the linear shoaling terms. It is quite plausible to argue the merits
and flexibilities of such a formalism, yet not guided by a completely binding rule, one is
compelled to make heuristic choices. Since any possible choice is also an acceptable
choice, the quest for a single formal model is rendered obsolete. This point is in opposition
to the basic approach of BN, and hence shows the essential difference between the two.
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2. CONSERVATION OF ENERGY FLUX

Schäffer and Madsen argue that, while some Boussinesq models conserve the energy
flux exactly, some do not, and that the BN model belongs to the former, while the MS
and Nwogu models belong to the latter. Further, they conclude that since Nwogu’s model
is a perfectly formal derivation, there could be no definite connection between the formal-
ism and the conservation of energy flux. After a re-assessment of Nwogu’s model, we do
agree that his model does not conserve the energy flux perfectly, but that there is still a
definite connection between the formalism and energy flux conservation.

Nwogu’s equations are indeed a challenge to combine. However, after a protracted
algebra and neglect of a definite linear shoaling term~ũxxxxt as a higher-order contribution
the authors had previously arrived at

htt 2 ghhxx 2 Sa +
1
3Dgh3hxxxx + ah2hxxtt

= hxFghx 2 3ahhxtt + 6Sa +
1
3Dgh2hxxxG

wherea is the dispersion parameter of Nwogu. Settinga = 2 (1 + b)/3 as dictated by
the correspondence between Nwogu’s model and BN’s model, one obtains exactly the
combined form of BN’s model (eqn. (8)). This was the reason that led the authors to state
that Nwogu’s model also conserves energy flux.

Considering the fact that no such term had to be neglected in deriving BN’s combined
model, and presuming that the new approach of Scha¨ffer and Madsen (1995) for obtaining
the shoaling gradient of Nwogu’s model is exact within the usual approximations, it must
be admitted that the neglect of the term~ũxxxxt is not justified, that the above equation is
merely the result of a fortuitous coincidence, and that Nwogu’s model does not conserve
the energy flux.

We are facing the rather curious fact that, while the Boussinesq models in terms of the
depth-averaged velocity and surface velocity (and their formal variations, which include
BN’s model) conserve the energy flux perfectly, all others fail to do so. What is then the
cause of this difference between these two types of equations? A very plausible explanation
is as follows.

The Boussinesq equations in terms of the mean velocity and the surface velocity (z =
0), as compared with the rest, have the important advantage that in the former the conti-
nuity equation and in the latter the momentum equation isexactto all orders of dispersion
parameter. The truncation errors then exist only in either momentum or continuity equ-
ation, in contrast to all the other models which contain truncation errors both in continuity
and momentum equations. For this reason the Boussinesq equations formulated in terms
of the variables indicated above are more accurate than the rest, a fact further supported
by energy considerations. Also, the formally manipulated forms of these equations, like
BN’s model, retain the same order of accuracy. For instance, it is possible to derive an
equivalent form of BN’s model in terms of the surface velocityu9. Applying the partial
replacement method to the equations of Peregrine (1967) results in
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ut9 + (u9·=)u9 + g=h = 0

ht + =[(h + h)u9] +
1
2

(1 + b*)=·Hh2=[=·(hu9)] 2
1
3

h3=(=·u)J
2

1
2

b*=·F2
2
3

(h2=ht + h=hht)G = 0

which, in unidirectional form, may be combined (with the usual assumptions) as

htt 2 ghhxx =
(1 + b*)

3
gh3hxxxx +

b*

3
h2hxxtt

= hx[ghx 2 b*hhxtt + 2(1 + b*)gh2hxxx]

Upon redefining the dispersion coefficientb* as 2 (1 + b), one obtains exactly eqn.
(8) of BN, which has been shown to be consistent with energy requirements.

Nwogu’s model, which contains truncation errors in both continuity and momentum
equations, fails to meet energy requirements, as explicitly depicted by Scha¨ffer and Madsen
in their figure 2. MS’s model, being derived from a more accurate Boussinesq model, is
expected to conserve the energy flux. Its failure originates not from their starting equations
but from the heuristic procedure they adopted. It may be remedied by following the partial
replacement procedure, which yields the corresponding forms of BN’s equations. However,
if one is to abandon the question of energy conservation, the origin of errors becomes
immaterial and MS’s model may well be regarded as formal as Nwogu’s model. After
checking the dispersion characteristics of these two models, one is quite justified to choose
MS’s model.

3. LINEAR SHOALING CHARACTERISTICS

BN make no claim of the superiority of their model regarding the linear shoaling charac-
teristics. These characteristics are dictated entirely by the formalism itself, which reveals
that the linear shoaling characteristics are in essence determined by the linear dispersion
characteristics and should not be manipulated independently. The emphasis of BN is on
the formalism of their derivation procedure and the energy conservation characteristics of
the resulting equations.

While the linear shoaling characteristics of MS’s equations appear to be superior, before
making a conclusive statement one must observe caution. It must be remembered that MS
have abandoned their choice of the dispersion parameterB = 1/21 in favor ofB = 1/15,
which was previously deemed aninferior choice (Madsenet al., 1991). We do completely
agree that, althoughB = 1/21 appears to provide a better fit to the linear theory dispersion
relation thanB = 1/15 does, the latter choice gives better computational results as observed
by the first author here in his previous numerical experiments. Therefore, a similar caution
ought to be observed in making a superiority declaration regrading the linear shoaling
characteristics; further tests are necessary for a conclusive decision.
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4. CLOSING REMARKS

The Boussinesq models in terms of the mean velocity (or depth-integrated velocity) and
the surface velocity are recognized to be more accurate than all the others. The re-arranged
versions of these equations (the BN model and the model derived above) are likewise
shown to retain this high accuracy, which manifests itself as perfect energy conservation
characteristics. Nwogu’s model does not confirm the energy requirements due to the pres-
ence of higher-order truncation errors in both continuity and momentum equations. MS’s
model falls into this last category too, because of the terms embedded into the model by
the addition process which, unlike Nwogu’s model, may be corrected. If the question of
energy conservation is regarded as important, the BN model and its equivalent in terms
of the surface velocity as derived here are the models to choose from. Otherwise, all the
models examined here are equally suitable.
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