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Abstract—Euler’s equations of motion in conjunction with the dynamic boundary condition are
manipulated to obtain exact (and approximate) alternative momentum equations for nonlinear
irrotational surface waves. The Airy and Boussinesq equations are re-derived as demonstrative
examples. A fully nonlinear version of the improved Boussinesq equations is presented as a new
application of the proposed equations. Further use of the equations in developing depth-integrated
wave models, which are not necessarily restricted to finite depths, is also pointed out. 1998
Elsevier Science Ltd. All rights reserved

1. INTRODUCTION

A wave model is in essence the result of a conversion from the three-dimensional govern-
ing equations to the two-dimensional wave equations. Such a process requires the specifi-
cation of the vertical dependence of the velocity or potential field, which in turn is used
in the governing equations for obtaining the corresponding wave equations. The implemen-
tation of this stratagem presents no difficulties for linear models; however, it always gives
rise to cumbersome expressions for nonlinear equations. Here, an appealing alternative,
which bypasses the burdens of the direct use of the governing equations, is presented in
the form of a momentum equation with quite manageable nonlinear terms. The equation
may be used conveniently for the development of highly nonlinear new wave models, as
demonstrated for a sample case.

The outline of the paper is as follows. The governing equations and boundary conditions
appropriate to the problem in hand are recapitulated in the following section. The depth-
integrated continuity equation is re-derived in Section 3 for the sake of completeness. In
Section 4 Euler’s equations for irrotational flow are stated first, and then an exact alterna-
tive momentum equation is derived. With further manipulations a variant of this equation
is also obtained. The approximate versions of these equations are given in Section 5.
Section 6 offers remarkably short derivations of the Airy and Boussinesq equations as
simple demonstrations and gives a fully nonlinear version of the improved Boussinesq
equations expressed in terms of the velocity at the still water. In closing, possibilities of
developing new wave models using the conservation equations derived are pointed out.
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2. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

The governing equations of an inviscid, irrotational flow are given by the continuity
equation, Euler’s equations, and irrotationality conditions:
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whereu, w are respectively the horizontal velocity vector and vertical velocity component,
p is the pressure, andg is the gravitational acceleration. Bold symbols indicate vectors
with x- and y-components only, that isu = (u,v) and x = (x,y). The two-dimensional
gradient operator, (∂/∂x, ∂/∂y), is denoted by=.

The boundary conditions for a free surface flow bounded by an impermeable rigid bot-
tom of arbitrary shape may be stated as follows:

p = ps at z = h(x,t) (5)

w =
∂h

∂t
+ u·=h at z = h(x,t) (6)

u·=h + w = 0 at z = 2 h(x) (7)

in which ps is a specified surface pressure,h(x,t) is the free surface elevation,h(x) is the
local water depth as measured from the still water level. The origin of the coordinate
system is taken at the still water level with positivez-axis pointing upward. The first
condition states that the pressure is known at the free surface (usually taken constant or
zero). The second condition is the kinematic free surface condition which asserts that the
particles on the surface remain there. Finally, Equation (7) is the bottom condition,
expressing that the velocity normal to the bottom must vanish.

3. DEPTH-INTEGRATED CONTINUITY EQUATION

Integrating Equation (1) over the entire water depth yields

E
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Using the boundary conditions (6) and (7) forw(h) and w( 2 h), respectively, and
invoking the Leibnitz rule, one obtains the well-known result
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which is exact. A weakly nonlinear version of Equation (9) follows from the Taylor series
expansion ofu at z = 0:
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u dz + hu0) = 0 (10)

in which u0 is the horizontal velocity vector at the still water levelz = 0.

4. AN ALTERNATIVE MOMENTUM EQUATION AND ITS VARIANT

Using the irrotationality conditions stated in Equation (4) it is a straightforward matter
to cast the Euler equations into the following forms:
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We proceed by integrating the vertical momentum equation from an arbitrary depthz
to the free surfaceh:
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The boundary condition stated in Equation (5) requiresp(h) = ps so that, from Equation
(13), the pressure at an arbitrary depthz is
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where the variables evaluated at the free surfacez = h are denoted asus, ws, while the
variables at an arbitrary depth are left as before.

Substitute Equation (14) into Equation (11) to obtain the following momentum equation
which, together with Equation (9), may be used in constructing wave models:
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The above equation is exact for an irrotational inviscid free surface flow and may be
considered as the dynamic counterpart of the kinematic equation (9). At this stage some
remarks are appropriate: the first term represents the fluid inertia in the horizontal direc-
tions at an arbitrary depthz, the second is the effect of hydrostatic pressure gradient due
to the spatial variation of the free surface, the third is the so-called dispersion term arising
from the vertical acceleration of the fluid column which may be considered as the non-
hydrostatic contribution to the pressure. The terms in parentheses are the nonlinear contri-
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butions associated with the particle kinetic energies, and finally the last term is the effect
of the specified surface pressure distribution.

Equation (15) may be further elaborated and put into a form which contains only surface
variables. First we note that with the help of the Leibnitz rule the integral appearing in
Equation (15) may be rewritten as
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Using the irrotationality condition,=w = ∂u/∂z, and performing the integration yield
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which may be used in Equation (15) to obtain
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where all the terms are expressed in terms of the surface quantities only. Note, in general,
(∂u/∂t)sÞ∂us/∂t. Equation (18), a variant of Equation (15), may also be used with Equation
(9) in developing nonlinear wave models.

Equation (18) is of course directly recoverable from the Bernoulli equation evaluated
at the free surfacez = h. One must only be careful in taking the gradient of (∂f/∂t)s:
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in which f is the velocity potential.

5. APPROXIMATE FORMS

Weakly nonlinear versions of the exact momentum equations (15) and (18) are now
derived. The approximation is carried out by expressing these equations in terms of the
variables at the still water level instead of the actual free surface. Introducing Taylor series
expansions for the nonlinear terms in Equation (15) and keeping only the leading order
terms gives
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where the subscript 0 marks the variables evaluated at the still water level. Note also that
ps is set to zero as is usual for problems without any surface disturbance.

Carrying out a similar procedure for Equation (18) gives
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where use has been made of the approximation that in the vicinity of the still water level
∂u/∂t < ∂u0/∂t + z∂2u0/∂t∂z so that (∂u/∂t)s < ∂u0/∂t + h=(∂w0/∂t). The replacement in
the second term follows from the irrotationality condition∂u0/∂z = =w0.

6. APPLICATIONS

6.1. Airy equations

The Airy equations can readily be obtained from Equations (10) and (21) by simply
settingu = u0 in Equation (10) andw0 = 0 in Equation (21):
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The unconventional form of the advection term is due to the use of the irrotationality
condition. Althoughu0 stands for the velocity vector atz = 0, it may be replaced by the
conventional depth-averaged velocity since the vertical distribution of the horizontal velo-
city field is uniform in the Airy theory.

6.2. Boussinesq equations

The Boussinesq equations are weakly dispersive, weakly nonlinear equations, therefore
it is sufficient to begin with any one of the approximate equations derived in the previous
section. For demonstration purposes, instead of Equations (10) and (21) we shall begin
with Equations (10) and (20). As these equations are valid for an arbitrary bathymetry we
can derive the Boussinesq equations for varying depth. Due to the compact form of Equ-
ation (20) the entire procedure will be quite simple in comparison with the established
techniques. Let the horizontal and vertical velocity components be expanded in power
series inz:

u = O`
n = 0

znu0n(x), w = O`
n = 0

znw0n(x) (24)

where subscript 0 stands for the quantities evaluated at the still water levelz = 0. In order
that these expansions be admissible, they must satisfy the kinematic conditions, namely
the bottom condition, continuity equation and irrotationality condition. Satisfying these
conditions and keeping only the first two terms of the series expansion results in

u = u0 2 z=[=·(hu0)] 2
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2
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w = 2 =·(hu0) 2 z(=·u0) (25)

whereu0 = u00 is the horizontal velocity vector at the still water levelz = 0 andh = h(x).
Thus far, in the kinematic part of the development, we have followed the usual process.
It is the dynamic part of the derivation that is shortened considerably by the use of the
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alternative momentum equation. Substituting Equation (25) into Equations (10) and (20)
gives
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which are the Boussinesq equations for varying bathymetry, expressed in terms of the
velocity at the still water level (Peregrine, 1967). In evaluating Equation (20) the nonlinear
terms proportional to the vertical velocity component have been neglected completely in
accordance with the usual Boussinesq approximations. Note that the velocity variables at
the arbitrary depthz cancelled each other out as a consequence of the satisfied irrotational-
ity condition uz = =w. Obviously, the nonlinear range of the Boussinesq equations may
be improved considerably if one begins with Equations (9) and (15). Unlike standard
approximations, the compact form of Equation (15) offers a numerically attractive alterna-
tive for high nonlinearity; such an application is considered next.

6.3. Fully nonlinear improved Boussinesq equations

Beji and Nadaoka (1996) introduced the concept of partial replacement for improving
the dispersion characteristics of the Boussinesq equations. Accordingly, the second-order
linear shoaling terms are partitioned by a simple algebraic manipulation and a part of
these terms are re-expressed using a first-order relation. The result is a Boussinesq model
with mixed dispersion terms that accommodates better dispersion characteristics. The same
procedure may be applied to the Boussinesq model derived in the previous section. Further-
more, by taking advantage of the compact form of Equations (9) and (15) a fully nonlinear
form of the improved version of Equations (26) and (27) may be derived. Substituting
Equation (25) into Equations (9) and (15), applying the partial replacement procedure to
the resulting continuity equation with a partition parameterb* and finally using the first-
order relationht + =·(hu0) = 0 for re-expressing only one part of the dispersion terms
result in

∂h

∂t
+ =·F(h + h)u0 +

b*

3
h=Sh

∂h

∂t D 2 GG (28)

+
(1 + b*)

2
=·Hh2=[=·(hu0)] 2

1
3

h3=(=·u0)J = 0

∂u0

∂t
+ =Fgh +

1
2

(us·us + w2
s) 2 LG = 0 (29)

where

G =
1
2

h2=[=·(hu0)] +
1
6

h3=(=·u0)

L = h=Sh
∂u0

∂t D +
1
2

h2=·
∂u0

∂t
(30)



613Technical Note

The surface velocitiesus andws are obtained from Equation (25) by settingz = h. Note
if the higher-order nonlinear contributionsG, L and ws are completely neglected andus

is approximated asu0 then setting the dispersion parameterb* = 0 leads to the original
equations derived in the previous section. On the other hand, keeping all these nonlinear
contributions and choosingb* = 2 6/5 give a fully nonlinear Boussinesq model with a
linear dispersion relation that corresponds to the second-order Pade´ expansion of the linear
theory dispersion relation. Furthermore, it may analytically be shown that the linear shoa-
ling gradient obtained using the energy flux concept agrees perfectly with the linear shoa-
ling gradient obtained from Equations (28) and (29), as in the model of Beji and
Nadaoka (1996).

7. CONCLUDING REMARKS

An exact alternative momentum equation (15) and its variant (18) have been derived
for the development of depth-integrated nonlinear wave models. Several applications of
these equations are given as demonstrations, including a new improved Boussinesq model
with fully nonlinear characteristics. The depth integration should not imply wave models
of finite depth as long as the integral value of the imposed vertical distribution function
remains finite. For instance, the recent wave model of Nadaokaet al. (1997), which uses
Equation (20), is a typical example that can produce nonlinear waves (including the
second-order Stokes waves) on infinitely deep water.
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