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Abstract

A recently proposed rescaling of the governing equations for inviscid, irrotational, free surface
hydrodynamics is reconsidered. A redefinition of the proposed scaling parameters leads to a
nondimensionalized problem which contains both the usual intermediate depth scaling and the
shallow water scaling as asymptotic limits, thus eliminating the need for a separate development
of scaling arguments for the two regimes as given in most standard references. q 1998 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Typical scalings of the water wave problem revolve around the use of three
representative length scales given by water depth h, wave amplitude a and inverse
wavenumber ky1, and introduce three nondimensional parameters representing ratios of
these scales, only two of which can be independent. In the following, we denote these
ratios by

mskh eska dsarh 1Ž .

Of these, m represents the ratio of water depth to wavelength and typically is used to
Ž Ž .. Ž .distinguish between short wave msO 1 and long wave m<1 regimes. The

remaining two parameters characterize the importance of nonlinearity in the problem,
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with e arising naturally in the short wave limit and d arising naturally in the long wave
limit, as discussed below.

Ž .Recently, Beji 1995 has suggested a scaling of the problem which introduces a
so-called wave Froude number, which we denote in the following by

ga
as 2Ž .2c

where g is gravitational acceleration and c denotes wave phase speed as dictated by
linear theory,

g tanh m
2c s tanh khsgh 3Ž .

k m

The resulting scaling identifies a as the principle parameter denoting the importance of
nonlinearity within the governing equations. However, the formulation retains wave
steepness e as a distinct nonlinear parameter and characterizes one linear term by the
ratio of the two nonlinear parameters e and a .

In the following, we review the conventional scaling analysis of the short and long
wave regimes for subsequent reference. We then review Beji’s suggested rescaling and
consider its asymptotic relation to the scaled equations obtained with conventional
methods. A new scaling is then suggested and is shown to contain both short and long
wave regimes as proper asymptotic limits. Finally, the relationship of Beji’s wave
Froude number to previous work is discussed.

2. A general framework and conventional scalings

Since the primary difference between short and long wave scaling resides in the
different assumptions about vertical length scales, we proceed here by leaving the
vertical length scale L unspecified during the initial stages of the analysis. Denotingv

dimensional variables by primes, we introduce dimensionless variables according to

x , yskxX , kyX ; zszXrL ; tskctX ; hsh
Xra 4Ž .v

We also leave the explicit expression for the scale of the velocity potential f
X somewhat

open; instead, we note that its scale should be given by the product of a velocity scale, a
horizontal length scale and a parameter characterising wave amplitude. We thus write

fsf
Xrf ; f scky1a 5Ž .0 0

where a is an unspecified parameter characterising amplitude. The resulting nondimen-
sional Laplace equation and bottom boundary condition are given by

y2
f qf q kL f s0; y hrL FzF arL h 6Ž . Ž . Ž . Ž .x x y y v z z v v

f s0; zsy hrL 7Ž . Ž .z v
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The dynamic boundary condition is given by

2 2kcf k f 10 0 22 2
hq f q f q f q f s0;Ž . Ž .Ž .t x y z2ž /ga 2 ga kLŽ .v

zs arL h 8Ž . Ž .v

Forcing a leading order balance between pressure gradient and local acceleration in the
Ž .Bernoulli equation would cause the first square-bracketed coefficient in Eq. 8 to be

2 Ž .unity, which leads to the choice asgarc , as indicated in Eq. 2 . Beji’s parameter is
thus a natural choice for a nonlinear parameter in the absence of any further specifica-
tion of an asymptotic form for c2. Applying this choice then leads to a revised
dimensionless dynamic condition given by

a 122 2
hqf q f q f f s0; zs arL h 9Ž . Ž . Ž . Ž .Ž .t x y z v2ž /2 kLŽ .v

The corresponding kinematic surface boundary condition becomes

a
h qa f h qf h y f s0; zs arL h 10Ž . Ž .Ž .t x x y y z v2kL arLŽ . Ž .v v

2.1. Short waÕe scaling

Conventional results for short and long wave scaling follow from a choice of the
vertical length scale L and an asymptotic form for c2. For short waves, we assumev

L sky1 ; c2 sgky1 ; ase 11Ž .v

and obtain the usual dimensionless problem

f qf qf s0; ymFzFeh 12Ž .x x y y z z

f s0; zsym 13Ž .z

e 22 2
hqf q f q f q f s0; zseh 14Ž . Ž . Ž .Ž .ž /t x y z2

h qe f h qf h yf s0; zseh 15Ž .Ž .t x x y y z

The problem is characterized by a single wave amplitude parameter e . The dispersion
parameter m appears but only as a scale for the total water depth.

2.2. Long waÕe scaling

For the case of long waves, we adopt a fixed vertical scale for the wave and invoke
shallow water asymptotes, and get

L sh; c2 sgh; asd 16Ž .v
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The revised dimensionless problem is then given by

1
f qf q f s0; y1FzFdh 17Ž .x x y y z z2m

f s0; zsy1 18Ž .z

d 122 2
hqf q f q f q f s0; zsdh 19Ž . Ž . Ž .Ž .t x y z2ž /2 m

1
h qd f h qf h y f s0; zsdh 20Ž .Ž .t x x y y z2m

and the dynamical significance of the dispersion parameter m2 in the establishment of a
distinction between horizontal and vertical motions is apparent.

3. Beji’s scaling

Ž .Beji 1995 suggests a different approach which revolves around the retention of the
parameter a . Beji then chooses a fixed vertical length scale ky1. The general set of Eqs.
Ž . Ž .6 – 10 then reduces to

f qf qf s0; ymFzFeh 21Ž .x x y y z z

f s0; zsym 22Ž .z

a 22 2
hqf q f q f q f s0; zseh 23Ž . Ž . Ž .Ž .ž /t x y z2

a
h qa f h qf h y f s0; zseh 24Ž .Ž .t x x y y z

e

Ž .as given in Beji 1995 . The resulting set of equations has two unusual features; the
retention of two wave amplitude parameters, and the characterization of a linear term by
the ratio of the two wave amplitude parameters. The first result is merely inconvenient,
making the system somewhat more complex than any corresponding conventional form
of the equations. The second result must be regarded as a defect of the proposed scaling,
since there is no reason that the linear balance between vertical motion and surface
movement should be influenced by any scale describing the wave amplitude. Beji
recognized that this ratio constitutes a revision of the shallow water dispersion parame-
ter, but the correct approach to writing it in such a way is not contained within Beji’s
proposed scaling.

Another defect of the proposed scaling lies in its inability to reproduce the shallow
water theory. This fault results from the apparent uniform choice of ky1 as a vertical

2 y1 Ž . Ž .length scale. Taking the asymptotic limit c ™gk in Eqs. 21 – 24 reproduces the
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short-wave analysis presented above. However, taking the long wave limit c2 ™gh
produces the defective system

f qf qf s0; ymFzFeh 25Ž .x x y y z z

f s0; zsym 26Ž .z

d 22 2
hqf q f q f q f s0; zseh 27Ž . Ž . Ž .Ž .ž /t x y z2

1
h qa f h qf h y f s0; zseh 28Ž .Ž .t x x y y z

m

in which the scale of vertical velocity in the kinematic boundary condition is misrepre-
sented, and where the distinction between horizontal and vertical contributions to the
quadratic Bernoulli term and in Laplace’s equation is absent altogether.

4. A revised scaling

The origin of the defects noted in the previous section stems from an unnatural choice
for the vertical length scale, which should be approached with the same care as the

Ž . Ž .nonlinear parameter. In particular, referring to Eqs. 6 – 10 , if we wish to unify the
problem description using a single nonlinear parameter, it is clear that the ratio arLv

should be set equal to a , leading to a choice of vertical scale

c2

L s 29Ž .v g

which has a continuous dependence on depth, and which is asymptotic to ky1 as m™`

and to h as m™0. Also note that

c2
y1 y1L s sk tanh msk m 30Ž .˜v g

where ms tanh m is introduced as a revised dispersion parameter. Using this choice for˜
L then leads to the dimensionless systemv

1 m
f qf q f s0; y FzFah 31Ž .x x y y z z2 mm ˜˜

m
f s0; zsy 32Ž .z

m̃

a 122 2
hqf q f q f q f s0; zsah 33Ž . Ž . Ž .Ž .t x y z2ž /2 m̃

1
h qa f h qf h y f s0; zsah 34Ž .Ž .t x x y y z2m̃

The resulting set of equations contains both the usual short and long wave scalings in
the appropriate asymptotic limits, since the dispersion parameter m™1 as m™` and˜
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Ž . Ž .m™m as m™0. Eqs. 31 – 34 thus represent the rescaling of the governing equations˜
proposed here.

5. Discussion

Given the natural appearance of Beji’s wave Froude number in the initial scaling
argument of Section 2, it is surprising that the parameter has not been utilized previously
in the literature. It bears some resemblance to the expansion parameter introduced by

Ž .Cokelet 1977 , which compares velocities in a coordinate system translating at the wave
speed to the wave speed itself. Cokelet’s parameter is defined according to

q2q2
c t2e s1y 35Ž .c 4c

where q and q denote fluid velocities at the wave crest and through in the movingc t

coordinate system, and c denotes the nonlinear phase speed of the wave. Note that
2 Ž . Ž .0Fe F1 denotes the range from lowest with q sq sc to highest with q s0c c t c

waves. For small amplitude waves, we may approximate c by the linear value, and
ga

q scy sc 1ya 36Ž . Ž .c c
ga

q scq sc 1qa 37Ž . Ž .t c

Ž . Ž . Ž .Substituting Eqs. 36 and 37 in Eq. 35 and retaining leading order terms in a

gives

'e s 2 a 38Ž .c

and the connection here to Cokelet’s parameter is clear.
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