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1. Introduction

The historic observation of John Scott Russell on horseback of a
solitary wave in 1834 and his subsequent experiments in 1845 spurred
the works on mathematical description of solitary waves (Miles, 1980).
Boussinesq (1872) was the first to develop a wave equation with
solitary wave solution. Lord Rayleigh (1876) made quite a similar
derivation to the same purpose but in closing acknowledged the pri-
ority of Boussinesq's work. Korteweg and de Vries (1895) presented
what might be termed the one-directional form of Boussinesq's one-
dimensional wave model and showed that the equation admitted not
only of solitary waves but also of a new class of permanent periodic
waves named “cnoidal” waves as solution.

For more than half a century, till the early 1960s, the subject of soli-
tarywaves was quite dormant. Then, especiallywith the advent of com-
puters, the interest in the Korteweg & de Vries equation or the KdV
equation began growing. Miles (1981) gives a very illustrative graph
of the number of citations of Korteweg and de Vries (1895) by year.
Meanwhile, two dimensional forms of Boussinesq equations for varying
bottom topography were derived first by Mei and Le Méhauté (1966)
using the bottom velocity as the dependent variable and shortly after-
wards by Peregrine (1967) using the averaged velocity instead of
the somewhat ambiguous bottom velocity. These derivations were
important for practical applications in coastal regions. In particular,
Peregrine's Boussinesq equations for varying bathymetry have be-
come almost the standard Boussinesq model of the coastal engineering
community. Beginning from the 1970s Abbott and co-workers have de-
veloped numerical schemes for solving one- and two-dimensionalwave
propagation problems via Boussinesq models (Abbott, 1974; Abbott
et al., 1973, 1978, 1984).

Witting (1984)made an outstanding contribution by introducing an
improvement to the dispersion characteristics of Boussinesq type equa-
tions bymeans of a newvelocity variable. At the same time his numerical
treatment of the one dimensional equations included all the nonlinear
terms though he rightly pointed out that the equations could not be
called fully-nonlinear as the series expansion in vertical coordinate nec-
essarily contained only finite number of terms. That is to say, the limited
order of dispersion terms consequently limits the order of nonlinearity.
This important point seems to be overlooked in some subsequent pub-
licationswhich claim full nonlinearity in Boussinesq equations, which in
essence is not possible.

Madsen et al. (1991) added second-order terms to Boussinesq equa-
tions to improve the dispersion characteristics. Later, Madsen and
Sørensen (1992) extended the improved equations to varying bathym-
etry. In the same vein, Beji and Nadaoka (1996) introduced the concept
of partial replacement rather than addition and claimed to derive a con-
sistent model, basing their arguments on the constancy of energy flux.

Nwogu (1993) gave an alternative derivation again of the Boussinesq
equations with better dispersion properties by expressing the equations
in terms of a velocity at an arbitrary water depth. Although never no-
ticed the approach of Nwogu was indeed equivalent to that of Witting:
Nwogu used the velocity at an arbitrary depth while Witting used a
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new velocity expressed in terms of unknown coefficients. Nwogu's deri-
vation is weakly nonlinear and for 2-D whereas Witting's derivation is
strongly nonlinear and for 1-D; otherwise the two derivations stem
from the same argument, which is essentially to use a different horizon-
tal velocity variable other than a conventional one such as themean ve-
locity or the surface velocity.

With regard to the KdV equation a notable contribution was made
by Benjamin et al. (1972). In a very formal and thorough analysis they
showed that the term with three spatial derivatives representing
the dispersion might be replaced by a term comprising two spatial de-
rivatives and a time derivative. While the new form of the equation
has the same formal justification it has mathematical and computa-
tional advantages over the former. Remarkably, before the formal
justification of Benjamin et al. (1972), Peregrine (1966) used exactly
the same form of the KdV equation in his numerical calculations of
an undular bore. In time, replacing the nonlinear or dispersion terms
(i. e. the second-order terms) with their equivalents has become a
usual practice; Mei (1989 p. 550) enumerates two different nonlinear
and four different dispersive terms, which in turn generate eight differ-
ent KdV type equations.

In this work first a KdV type equation with mixed dispersion terms
is derived from the combined form of the improved Boussinesq equa-
tions given by Beji and Nadaoka (1996). The improved Boussinesq
equations are based on the application of partial replacement technique
to the classical equations of Peregrine (1967) for varying water depth.
Following the derivation of a generalized KdV equation withmixed dis-
persion and linear shoaling terms the linear shoaling gradient of the
equation is compared with that obtained from the energy flux concept.
Such direct comparability clearly indicates an intricate and inseparable
link between the dispersion and the shoaling terms. Accordingly then
the form of the KdV equation corresponding to Peregrine's classical
Boussinesq model is found to produce a shoaling gradient in complete
agreement with the energy flux concept. Though based on the unim-
proved Boussinesq equations the new type KdV equation possesses
mixed dispersion and shoaling terms with improved characteristics.
A numerical example based on the simulation of an experiment of Beji
and Battjes (1994) is given to demonstrate the improved dispersion
and shoaling aspects of the new equation.

2. Combined form of improved Boussinesq equations

By introducing the partial replacement technique to Peregrine's
(1967) Boussinesq model for varying water depths Beji and Nadaoka
(1996) gave the following continuity and momentum equations:

ηt þ ∇ � hþ ηð Þu½ � ¼ 0 ð1Þ

ut þ u � ∇ð Þuþ g∇η ¼ 1þ βð Þ
2

h∇ ∇ � hutð Þ½ � þ β
2
gh∇ ∇ � h∇ηð Þ½ �

−
1þ βð Þ
6

h2∇ ∇ � utð Þ−β
6
gh2∇ ∇2η

� � ð2Þ

where u is the vertically averaged or mean horizontal velocity vector
with components (u, v) and η is the free surface displacement as mea-
sured from the still water level. h = h(x, y) is the spatially varying
local water depth and g is the gravitational acceleration. ∇ stands
for two-dimensional horizontal gradient operator with components
(∂/∂x, ∂/∂y)while subscript t denotes partial differentiationwith respect
to time. β is a non-dimensional scalar determined according to Padé
approximation of the linear theory dispersion relation so that the
resulting equations have better dispersion characteristics. Degenerate
cases β= 0 and β=−1 indicate respectively Peregrine's original mo-
mentum equation and a full replacement of the dispersion term in the
momentum equation.

The above equations, though nonlinear, may be combined to result
in a single equation in terms of the free surface displacement η by
appropriate approximations, which are not repeated here for the sake
of brevity. The resulting equation is

ηtt ¼ gh∇2ηþ 1þ βð Þ
3

h2∇2ηtt−
β
3
gh3∇2 ∇2η

� �
þ 3
2
g∇2 η2

� �
þg∇h � ∇ηþ 1þ βð Þh∇h � ∇ηtt−2βgh2∇h � ∇ ∇2η

� � ð3Þ

in which only the terms containing the first spatial derivative of the
depth are retained. Truncation of higher depth gradients implies the
use of mild-slope approximation, which is maintained throughout
the work wherever necessary. 1-D form of Eq. (3) reads

ηtt ¼ ghηxx þ
1þ βð Þ
3

h2ηxxtt−
β
3
gh3ηxxxx þ

3
2
g η2
� �

xx þ ghxηx

þ 1þ βð Þhhxηxtt−2βgh2hxηxxx: ð4Þ

The degenerate case β = −1 for constant depth gives the original
derivation of Boussinesq (1872):

ηtt ¼ ghηxx þ
1
3
gh3ηxxxx þ

3
2
g η2
� �

xx: ð5Þ

It is worthwhile to point out that Boussinesq's entire work was
based on Eq. (5) (his Eq. (26)) and that he never gave his model sepa-
rately as continuity and momentum equations.

3. Improved KdV type equation for varying depth

An improved KdV-like equation for uneven bathymetry is now
derived. Derivation is based on the combined 1-D Boussinesq model,
Eq. (4). First, introduce a co-ordinate system moving in the positive
x − direction with the non-dispersive phase velocity C ¼

ffiffiffiffiffiffi
gh

p
so that

the evolutions of the wave form in this moving system is slow, permit-
ting to write the following new co-ordinates:

σ ¼ x−Ct; τ ¼ εt ð6Þ

where ε is a small parameter indicating the weak changes of the wave
form in time in the moving co-ordinate system. Expressing the terms
in Eq. (4) in the new co-ordinate system gives

ηxx ¼ ησσ ; ηxxx ¼ ησσσ ; ηxxxx ¼ ησσσσ
ηtt ¼ C2ησσ−2εCηστ þ εCCσησ ; ηxtt ¼ C2ησσσ−2εCησστ þ εCCσησσ

ηtxtx ¼ C2ησσσσ−2εCησσστ þ 4εCCσησσσ−3εCσησστ

ð7Þ

where the terms containing the spatial derivative of C have also been
labeled by ε to indicate they are an order higher, and the terms propor-
tional to ε2 are all neglected. The neglect of these terms probably causes
the resulting KdV type equations to lose the energy conservation char-
acteristics that the Boussinesq equations possess. While the Boussinesq
model of Beji andNadaoka (1996) is consistent for anyβ values, theKdV
type model derived from it is consistent for only β = 0 as is shown
in Section 5. Substituting the expressions of Eq. (7) into Eq. (4) and
re-arranging results in

−ε2Cηστ−
1
3
C2h2ησσσσ þ ε

2 1þ βð Þ
3

Ch2ησσστ−
3
2
g η2
� �

σσ

þεCCσησ−εghσησ−ε
5−βð Þ
3

C2hhσησσσ þ ε
5 1þ βð Þ

2
Chhσησστ ¼ 0

ð8Þ

where the last four terms are the so-called linear shoaling terms. The
first two of these four terms originate from the continuity equation
and may be put into the same form, and are kinematic in essence;
while the last two terms originate from the dispersive terms or the
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Fig. 1. Relative error percentage 100(CK − CE)/CE versus relative depth kh for different
forms of KdV equation.
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terms related to the non-hydrostatic pressure, which in turn are related
to the vertical velocity, and are essentially dynamic in nature. These last
two terms are strictly dictated by the linear dispersion terms, ηxxtt and
ηxxxx, and cannot be added or subtracted arbitrarily on the premise of
being small; however, they may bemanipulated to some degree within
allowable limits as have been done above by changing the order of dif-
ferentiations hence their relative coefficients but not their total value in
the transformed expressions.

Before performing an integration with respect to σ the terms CCσησ
and ghσησ are combined by employing C2 = gh hence 2CCσ = ghσ and
the equation is divided by− 2C5/2 so that it becomes

εC−3=2ηστ þ
1
6
C−1=2h2ησσσσ−ε

1þ βð Þ
3

C−3=2h2ησσστ þ
3
4
gC−5=2 η2

� �
σσ

þε
1
4
gC−5=2hσησ þ ε

5−βð Þ
6

C−1=2hhσησσσ−ε
5 1þ βð Þ

4
C−3=2hhσησστ ¼ 0:

ð9Þ

The reason for performing the integration after dividing by C5/2 is
to lead the equation to a formwith consistent linear shoaling character-
istics. Such a manipulation changes only the relative values of the
shoaling terms but not their total value. Since the non-dispersive
phase speed C is a spatially varying function, the integration of Eq. (9)
is performed according to the following expressions.

Z
C−1=2h2ησσσσ
� �

dσ ¼ C−1=2h2ησσσ−
7
4
C−1=2hhσησσZ

C−3=2h2ησσστ

� �
dσ ¼ C−3=2h2ησστ−

5
4
C−3=2hhσηστ :

ð10Þ

The validity of the above equalities, correct to the second spatial
derivative of C and h, may be verified easily by differentiating both
sides with respect to σ. The remaining terms are integrated by simply
removing a subscriptσ since they are all second-order and the contribu-
tion of higher-order terms are all neglected. The integrated and re-
arranged form of Eq. (9) is then

εητ þ
1
6
Ch2ησσσ−ε

1þ βð Þ
3

h2ησστ þ
3
4
Ch−1 η2

� �
σ

þε
1
4
Ch−1hσηþ ε

13−4βð Þ
24

Chhσησσ−ε
5 1þ βð Þ

6
hhσηστ ¼ 0:

ð11Þ

In order to go back to the original co-ordinate system, the following
inverse transformations are needed

εητ ¼ ηt þ Cηx; εητσσ ¼ ηxxt þ Cηxxx þ 2Cxηxx
εηστ ¼ ηxt þ Cηxx; ησσ ¼ ηxx; ησσσ ¼ ηxxx

ð12Þ

Substituting Eq. (12) into Eq. (11) results in a generalized KdV type
equation for uneven depths:

ηt þ Cηx−
1þ 2βð Þ

6
Ch2ηxxx−

1þ βð Þ
3

h2ηxxt þ
3
4
Ch−1 η2

� �
x

þ1
4
Ch−1hxη−

15þ 32βð Þ
24

Chhxηxx−
5 1þ βð Þ

6
hhxηxt ¼ 0:

ð13Þ

The above KdV type equation embodies all the known KdV type
equations as special cases. First of all since all available KdV-like equa-
tions are basically formulated for constant depth, the terms propor-
tional to hx must be dropped. Then, setting β = −1 gives the original
Korteweg and de Vries (1895) equation while β = −1/2 gives the so-
called regularized KdV equation of Benjamin et al. (1972) or of
Peregrine (1966). In Section 5 it is shown that β = 0, derivation based
on the original equations of Peregrine (1967), results in a model
in exact agreement with the constancy of energy flux. The last two
terms of Eq. (13) are the terms that ensure consistent linear shoaling
properties.
4. Dispersion characteristics

Dispersion characteristics of the generalized KdV type equation
are now examined. With a0 denoting the constant wave amplitude,
substituting η = a0 exp[ik(x − CKt)] into the linearized, constant-
depth form of Eq. (13) and solving for the phase velocity CK gives

CK ¼ C
1þ 1

6
1þ 2βð Þk2h2

1þ 1
3

1þ βð Þk2h2

0
B@

1
CA ð14Þ

where, as indicated before, C ¼
ffiffiffiffiffiffi
gh

p
is the non-dispersive shallow

water wave celerity, k is the wave number, and CK is the phase velocity
of the generalized KdV type equation. On the other hand, the “exact”
phase speed according to the linear theory or the second-order Stokes
theory is given by

CE ¼ C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tanh kh

kh

r
ð15Þ

Eq. (15) may be expressed in terms of Padé approximations or Padé
approximants, as named specifically (Baker and Graves-Morris, 1980).
First expanding tanh kh in a Maclaurin series, then dividing the expan-
sion by kh and taking the square root of it, and finally establishing the
[2/2] Padé approximant gives

CP ¼ C
1þ 9

60
k2h2

1þ 19
60

k2h2

0
B@

1
CAþ O k6h6

� �
: ð16Þ

In order for Eq. (14) be identical with Eq. (16), the free dispersion
parameter β must be chosen as β = −1/20. However, in Section 5 it
is shown that β must be set to zero if a consistent model is required.
In Fig. 1, the accuracy of the dispersion relationship (14) is compared
with the exact expression (15) for β = 0, β = −1/20, β = −1/2, and
β = −1 by depicting the error percentage 100(CK − CE)/CE versus the
dispersion parameter kh or relative depth. As the figure shows,
β = −1/20, the case corresponding to the [2/2] Padé approximant,
has the lowest error percentage compared with the rest. It has 6.8 %
error for kh= π, which is basically the deep water limit. β=0 is some-
what inferior to β=−1/20 with 9.5 % error for kh= π. The reason lies
in the fact thatwhile the dispersion relation for β=−1/20 corresponds
to a representation of the exact dispersion relationship correct to
O(k6h6), as obtained by establishing the [2/2] Padé approximant, the
dispersion relation for β = 0 corresponds to a representation correct
to O(k4h4). However; depending on the judgment, β = 0 may be
preferred in favor of using a consistent model. On the other hand, the
regularized KdV equation β = −1/2 and the classical KdV equation
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β = −1 have respectively − 32.9 % and − 214.5 % relative errors for
kh = π. These errors, being quite large, exceed the set limits of the
graph and therefore cannot be observed from the figure.

5. A consistent model

A wave model with consistent linear shoaling characteristics is now
established by comparing the linear shoaling gradient obtained from
the wave equation with that obtained from the energy flux concept.
Eq. (13) in linearized form is now re-written as

ηt þ Cηx−pCh2ηxxx−qh2ηxxt þ C=4hð Þhxη−rChhxηxx−shhxηxt ¼ 0

ð17Þ

where the non-dimensional coefficients p=(1+2β)/6, q=(1+ β)/3,
r = (15 + 32β)/24, s = 5(1 + β)/6 are used for the sake of a simpler
notation. The shoaling gradient; that is, the spatial change of wave am-
plitude due to change in depth is obtained byfirst using thewavemodel
itself and then by invoking the constancy of energy flux.

5.1. Shoaling gradient from wave model

Let η(x, t) = a(x)exp[i(ωt − φ(x))] with a(x) representing the
spatially varying wave amplitude and φ(x) the phase function such
that dφ(x)/dx = k(x). Note that both the wave amplitude and the
wave number are spatially varying quantities. Substituting η(x, t) into
Eq. (17) and keeping only the first spatial derivatives of k(x) results in

C þ 3pCk2h2−2qωkh2
� �

ax þ C=4hþ rCk2h−sωkh
� �

ahx

þ 3pCkh2−qωh2
� �

akx þ ω−kC þ qωk2h2−pCk3h2
� �

ai ¼ 0:
ð18Þ

The real and imaginary parts must vanish separately. The last term,
the imaginary part, is the linear dispersion relationship of the wave
model and is indeed identical with Eq. (14) when ω is set to kCK.
Thus, setting the imaginary part to zero gives ω = kC(1 + pk2h2)/
(1 + qk2h2) which, by recalling ωx = 0, may be differentiated with re-
spect to x to obtain an expression between kx and hx:

kx
k
¼ −

1
2

1þ 5p−3qð Þk2h2 þ pqk4h4

1þ 3p−qð Þk2h2 þ pqk4h4

 !
hx
h

ð19Þ

Using the expression forω and Eq. (19) in the real part of Eq. (18) re-
sults in a relationship between the amplitude gradient ax and the depth
gradient hx as dictated by the wave equation itself:

ax
a

¼ −
1
4

Γ1
Γ20

 !
hx
h

Γ0 ¼ 1þ 3p−qð Þk2h2 þ pqk4h4

Γ1 ¼ 1− 3p−2q−4r þ 4sð Þk2h2− 30p2 þ 7q2−28pq−12pr þ 16ps−4qs
� �

k4h4

− 26p2q−15pq2þ12p2sþ 4q2r−16pqr
� �

k6h6−4pq pq−qr þ psð Þk8h8:
ð20Þ

5.2. Shoaling gradient from energy flux concept

A relationship between ax and hx is nowderived by invoking the con-
stancy of energyflux; that is, ∂(a2Cg)/∂x=0. The group velocity dictated
by the dispersion relationship of Eq. (17) is obtained as

Cg ¼ dω
dk

¼ C
1þ 3p−qð Þk2h2 þ pqk4h4

1þ qk2h2
� �2

0
B@

1
CA: ð21Þ
Differentiating Cg with respect to x and making use of Eq. (19) in
ax/a = − (1/2)(Cg)x/Cg gives

ax
a

¼ −
1
4

Γ2
Γ20

 !
hx
h

Γ0 ¼ 1þ 3p−qð Þk2h2 þ pqk4h4

Γ2 ¼ 1þ 4 3p−2qð Þk2h2 þ 3 5p2 þ q2−4pq
� �

k4h4 þ 4p2qk6h6 þ p2q2k8h8

ð22Þ

which is the expression dictated by the constancy of energy flux ac-
cording to the dispersion relationship of the wave equation. Note
that unlike Eq. (20), Eq. (22) does not contain the parameters r and
s which arise from the linear shoaling terms of the wave equation.
However, they must be related to p and q for a consistent model
if Eq. (20) be identical with Eq. (22). Such a relationship reveals the
intricate connection between the dispersion terms and the shoaling
terms. A careful examination of the derivation process shows that
the shoaling terms, terms proportional to r and s, originate from the
dispersion terms, terms proportional to p and q. Therefore, they can-
not be treated as independent parameters and must be related.

5.3. Matching of two shoaling gradients

Requiring Eq. (20) be identical with Eq. (22) in turn requires Γ1 =
Γ2 as the denominator Γ02 is the same for both expressions. Equating
term by term requires the following equalities be satisfied.

q ¼ 2p; r ¼ 15p=4; s ¼ 5p ð23Þ

in which p is free to take on any value. Recalling now p = (1 + 2β)/6,
q = (1 + β)/3, r = (15 + 32β)/24, s = 5(1 + β)/6 it is seen at once
that the set of equalities in Eq. (23) is satisfied if and only if β = 0 so
that p = 1/6, q = 1/3, r = 5/8, s = 5/6. The solution is unique as
no other choice is possible for β; neither the original β = −1 nor the
regularized KdV equation β = −1/2 complies with equalities of
Eq. (23). Likewise, if p is selected according to the [2/2] Padé approxima-
tion as p = 9/60, Eq. (23) would require q = 2p = 18/60 which is at
variance with q = 19/60 of Eq. (16), albeit slightly.

It is worthwhile to point out that when p= q= r= s=0, the equa-
tion degenerates into the combined unidirectional form of the non-
dispersive shallow water equations and the shoaling gradient becomes
Γ1/Γ02 = Γ2/Γ02 = 1 hence ax/a = − hx/4h, which is Green's law of
shoaling for a canal of gradually varying depth but constant breadth
(Lamb, 1932; page 275). The term (C/4h)hxη appearing in Eq. (13) is re-
sponsible for this result; as indicated before it is the geometric part of
shoaling, originating from the continuity equation. The shoaling terms
proportional to r and s originate from the dispersive terms of the mo-
mentum equation.

Fig. 2 depicts Γ1/Γ02 and Γ2/Γ02 for β=0 and β=−1/20 aswell as the
exact ratio (Γ2/Γ02)E obtained using the group velocity corresponding to
exact dispersion relationship. The consistent model β = 0 produces
identical results; that is, Γ1 and Γ2 are the same. On the other hand, as
shown in the figure, they differ for β = −1/20. Despite the existence
of two different gradients, both shoaling gradients for β = −1/20 ap-
proximate the exact expression better and that the difference between
Γ1 and Γ2 becomes appreciable only for high kh values. Compared to dis-
persion characteristics shown in Fig. 1, Fig. 2 reveals less accurate
shoaling characteristics with increasing relative depth. This is simply
because the shoaling gradient is a higher order expansion compared
to thedispersion relation hence diverges rapidly from the exact shoaling
gradient. Finally, it must be emphasized that prediction accuracy of
a wave model in shoaling region is greatly dependent on its shoaling
terms; Simarro (2013) introduced a different concept of analysis
based on energy balance to investigate the shoaling characteristics
of Boussinesq type equations. In this work, the concept of energy flux
is employed for producing a consistent model and the performance of
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wave model in an experimental simulation for different β values is in-
vestigated in sub-section 6.1.

6. Numerical treatment

Various numerical methods may be used for the numerical solution
of Eq. (13); particularly a finite-difference scheme would be preferable.
The existence of the third spatial derivative of surface elevation however
necessitates a more sophisticated discretization than a straightforward
finite-difference formulation if a robust scheme is aimed. Such a scheme
is planned for a futurework as an extension of the present improved KdV
model to an improved Kadomtsev–Petviashvili or briefly the KP type
equation (Kadomtsev and Petviashvili, 1970). Here, the spectral method
as detailed in Beji andNadaoka (1999) for a unidirectionalwavemodel is
directly adopted to Eq. (13). The procedure is originally due to Bryant
(1973); Freilich and Guza (1984) applied a similar approach to variants
of Boussinesq equations while Madsen and Sørensen (1993) used the
technique in a thorough investigation of their improved Boussinesq

model. Letting ηðx; tÞ ¼ ∑þ∞
n¼−∞AnðxÞei½ωnt−∫knðxÞdx� in Eq. (13) and

then changing to the real variables by setting AnðxÞ ¼ 1
2 ½anðxÞ−ibnðxÞ�

gives the following evolution equations for the real variables an(x) and
bn(x)

dan
dx

¼ −
αs

α1
an þ3C

4h

XN−n

m¼1

αþ ambnþm−anþmbmð Þ cosθþþ amanþmþbmbnþmð Þ sinθþ� �

þ3C
8h

Xn−1

m¼1

α− ambn−m þ an−mbmð Þ cos θ− þ aman−m−bmbn−mð Þ sin θ−½ �

ð24Þ

dbn
dx

¼ −
αs

α1
bn−

3C
4h

XN−n

m¼1

αþ amanþmþbmbnþmð Þ cos θþ− ambnþm−anþmbmð Þ sinθþ� �

−
3C
8h

Xn−1

m¼1

α− aman−m−bmbn−mð Þ cos θ−− ambn−m þ an−mbmð Þ sinθ−½ �

ð25Þ

where the free index n runs from 1 to N with N being the number of
frequency components retained in the solution. The coefficients are de-
fined as

α1 ¼ 1þ 3pk2nh
2

� �
C−2qknh

2ωn; α2 ¼ 3pknC−qωnð Þh2

αs ¼ C=4hþ rCk2nh−sknhωn

� �
hx þ 3pknC−qωnð Þh2 knð Þx

ð26Þ
with

δþ ¼ knþm−km−kn; θþ ¼
Z x

0
δþdx

δ− ¼ kn−m þ km−kn; θ− ¼
Z x

0
δþdx

αþ ¼ knþm−km
α1 þ α2δþ

; α− ¼ kn−m þ km
α1 þ α2δ−

:

ð27Þ

For a given radian frequency ωn and water depth h the corre-
sponding wave number is obtained from the dispersion relationship
of the wave model by solving the cubic equation:

pCh2
� �

k3n− qωnh
2

� �
k2n þ Ckn−ωn ¼ 0: ð28Þ

Thewave number gradient (kn)xmay be directly calculated from the
depth gradient hx byusing Eq. (19). The linear shoaling characteristics of
the original equation are exactly preserved in the above formulation;
this can be easily seen by comparing αs with Eq. (18) when the imagi-
nary part, Eq. (28), is set to zero.

Eqs. (24) and (25) are solved for the unknown components an(x)
and bn(x) by employing the Runge–Kutta fourth-order formulation.
Once the an(x)s and bn(x)s are obtained the free surface may be con-
structed from η(x, t) = ∑n = 1

N [an cos(ωnt − ∫kndx) + bn sin(ωnt −
∫kndx)]. Here, the integrated forms of the wave numbers are essential
as they are spatially varying quantities. Evolution Eqs. (24) and (25) of
wave model, Eq. (13), are now used for a sample simulation.

6.1. A numerical example: nonlinearwave evolutions over a submerged bar

Beji and Battjes (1994) made measurements of regular and random
nonlinear waves passing over a submerged bar for numerical testing
purposes. Briefly, the bathymetry is constant with 0.4 m water depth
for the first 0.3 m, then an upslope of 1:20 follows for 6 m reducing
the water depth to 0.1 m. For 2 m the depth is constant at 0.1 m then
a downslope of 1:10 increases the water depth to 0.4 m in 3 m. Details
of the experimental setup and conditions can be found in Beji and
Battjes (1994). Here, the regular long wave case with T = 2 s period
and H = 0.02 m wave height is simulated and compared with the ex-
perimental data. The test is a challenging one as it requires good non-
linear shoaling and dispersion characteristics, especially due to wave
decomposition phenomenon taking place in the lee of the submerged
bar. Classical Boussinesq equations could not cope with such a simula-
tion as reported in Beji and Battjes (1994). Similarly, the original and
regularized KdV equations could not be used for meaningful spectral
solutions since no real wave numbers could be computed for the
third and higher harmonic frequencies. The problem arises from large
negative errors in the dispersion relations of these equations as previ-
ously indicated in Fig. 1. Necessarily then numerical simulations are
performed only for two different β values, β = 0 and β = −1/20,
both corresponding to improved forms of the KdV equations derived
in this work. Spectral solutions are carried out for N = 6 harmonic
frequencies, the basic frequency being set to the incident wave fre-
quency. The harmonic components of the incoming wave at Station 1
of the experiments are introduced as boundary values at x = 0 m.
While the first harmonic or the primary wave, is quite well predicted
the second harmonic is overestimated by both models as clearly seen
in Fig. 3. For the first two harmonics virtually there are no differences
between the predictions of the two models. For the third and fourth
harmonics some differences are observed; despite its apparent inferior-
ity in dispersion characteristics the consistent model β = 0 seems to
perform somewhat better than β = −1/20, especially for the third
harmonic.
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Fig. 3. Change in thefirst four harmonics over a submerged bar. Symbols are experimental
data, lines are simulations of KdV equation.
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7. Concluding remarks

A new form of the Korteweg & de Vries equation with improved lin-
ear dispersion and consistent linear shoaling characteristics is derived.
The equation has improved linear dispersion characteristics in the
sense that the phase celerity of the equation deviates less than 10%
from the exact linear dispersion relationship for kh= π, which is virtu-
ally the deep water limit. The consistency in linear shoaling is achieved
by ascertaining identical linear shoaling gradients as obtained from the
wave equation and the energy flux concept. A challenging numerical
simulation of nonlinear waves traveling over a submerged bar is per-
formed using the new equation for two different β values, which corre-
spond to the consistent model β = 0 and the dispersionally better but
not consistent model β = −1/20. The comparisons with the experi-
mental data reveal that the results obtained from two different param-
eters differ only slightly and the consistent model β = 0 may be
preferred despite its apparently inferior dispersion properties. Howev-
er; a different opinion may favor to improve the dispersion characteris-
tics further instead of adhering to the consistency hence seek a best fit
to the exact dispersion curve within a preset limit by adjusting the pa-
rameter β. Such an approach is equally arguable and may be tried for
comparisons.

Finally, the improved unidirectional equation may readily be ex-
tended to include weakly two-dimensional effects as in a KP type equa-
tion. An extension in this direction with a robust and accurate finite-
difference discretization is planned as a future work.
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