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ORIGINAL RESEARCH PAPER

Kadomtsev–Petviashvili type equation for entire range of relative water depths
Serdar Beji

Faculty of Naval Architecture and Ocean Engineering, Istanbul Technical University, Istanbul, Turkey

ABSTRACT
A Kadomtsev–Petviashvili type equation valid for the entire range of relative water depths;
namely, shallow, intermediate, and deep, is derived. The new equation is capable of simulating
the shallow water cnoidal waves and the deep water second-order Stokes waves equally well
besides accounting for wave shoaling due to varying water depths. Linear shoaling properties of
the equation for unidirectional sinusoidal waves are in complete agreement with the energy flux
concept. A finite-difference scheme is adopted for numerical solution of the equation to demon-
strate its performance against test cases and its wide range of possible applications.
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1. Introduction

Since its first derivation by Kadomtsev and Petviashvili
(1970) for the purpose of studying the stability of
solitary waves the Kadomtsev and Petviashvili equation
or shortly the KP equation has gained an appreciable
interest, particularly in the field of non-linear dispersive
water wave modeling. The KP equation is viewed as
the weakly directional version of the Korteweg and
deVries or KdV equation (Korteweg and deVries,
1895), which in turn is a one-way propagation form
of one-dimensional Boussinesq (1872) equation: a
weakly non-linear weakly dispersive wave model.

Bryant (1982) derived a set of non-linear evolution
equations which, depending on the specification of coef-
ficients, could describe fully dispersive waves as well as
weakly dispersive waves of the KP type. Using these
equations, Bryant (1982) studied obliquely intersecting
permanent waves and indicated the rather good perfor-
mance of the KP equation for the cases considered.

Tsuji and Oikawa (2007) considered the oblique
interaction of two solitons of the same amplitude by
employing an extended KP equation with cubic non-
linearity. Kodama (2010) gave an extensive survey of
solitons and their modeling by KP equation. Yeh, Li,
and Kodama (2010) investigated analytically and
experimentally Mach reflection of an obliquely inci-
dent solitary wave while Li, Yeh, and Kodama (2011)
made an in-depth review of the same subject.

In laboratory experiments, Hammack, Scheffner, and
Segur (1989) generated finite-amplitude two-dimen-
sional shallow water waves and mathematically
described them by the exact solutions of the KP equa-
tion. The capabilities of the KP equation are noted to
be not restricted to weakly directional waves; the
extend of directionality encompassed by the KP

equation is observed to be beyond the usual validity
range of it but only slightly hindered by its linear non-
dispersive character in transverse direction. Such satis-
factory performance of the weakly non-linear models
has quite recently been pointed out by Stiassnie (2017)
with reference to the experimental confirmations of
Bonnefoy et al. (2016). From this point of view, for
practical application purposes it becomes much more
important to place emphasis on the dispersion and
shoaling characteristics of the equation rather than
higher non-linearity. The work presented here aims
precisely at developing such an equation that pos-
sesses excellent linear dispersion and shoaling charac-
teristics with just sufficient non-linearity.

Nadaoka, Beji, and Nakagawa (1994) introduced a
vertically integrated non-linear wave model without
restriction on relative depth. Likewise, making use of
the variational principle of Luke (1967), Isobe (1994)
gave various wave models for different depth-depen-
dency functions. Continuing in the same line, Nadaoka,
Beji, and Nakagawa (1997) presented a weakly non-
linear wave model with full dispersion properties by
employing the Galerkin method which provided a set
of coupled momentum equations for the components
of horizontal velocity vector. Together with the conti-
nuity equation the wave model results in 2Nþ 1 equa-
tions, N being the number of wave numbers associated
with velocity components contributing to the band-
width of the wave field. Taking only three components
N ¼ 3 is quite sufficient for simulating a broad-banded
wave spectrum while taking just a single component
N ¼ 1 is good enough for the simulation of waves with
a narrow-banded spectrum. The special case of a single
component was further elaborated by Beji and
Nadaoka (1997) to produce a non-linear mild-slope
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equation. Here, based on the work of Beji and Nadaoka
(1997) a KP type wave equation is produced for mod-
eling narrow-banded weakly non-linear water waves
over varying bathymetry for arbitrary relative depths.

The newly derived equation is discretized by a
Crank–Nicolson type finite-difference formulation
and various test cases are carried out. First, shoal-
ing properties of the equation for sinusoidally
changing bathymetry are explored for incident
waves of two different relative depths. Then, obli-
quely intersecting two-dimensional cnoidal waves
and second-order Stokes waves are simulated.
Finally, Whalin’s (1971) experimental measure-
ments of non-linear waves over a converging
zone are compared with numerical results. The
simulations clearly demonstrate that the KP type
equation derived here is capable of simulating
propagation of linear and non-linear waves over
the entire range of relative water depths with
acceptable accuracy.

2. One component wave model in combined
form

Before proceeding to the derivation of the KP type
equation, the combined form of the one component
wave model of Nadaoka, Beji, and Nakagawa (1997) is
recaptured. For the special case of a single compo-
nent, Nadaoka, Beji, and Nakagawa (1997) give the
following continuity and momentum equations.

@ζ

@t
þ � � C2

p

g
þ ζ

 !
u0

" #
¼ 0; (1)

CpCg
@u0

@t
þ C2

p� gζ þ ζ
@w0

@t
þ 1
2

u0 � u0 þ w2
0

� �� �

¼ @

@t
CpðCp � CgÞ

k2
�ð� � u0Þ þ �

CpðCp � CgÞ
k2

� �
ð� � u0Þ

� �
(2)

where ζ is the free surface displacement as measured
from the still water level, u0 is the horizontal velocity
vector with components ðu0; v0Þ, and w0 the vertical
velocity component all at the still water level z ¼ 0. Cp,
Cg, and k denote respectively the phase and group
velocities and wave number, computed according to
the linear theory dispersion relationship ω2 ¼
gk tanh kh for a prescribed dominant frequency ω and
a local depth h ¼ hðx; yÞ. g is the gravitational accel-
eration and � stands for two-dimensional horizontal
gradient operator with components ð@=@x; @=@yÞ.

The above equations constitute a wave model for
narrow-banded weakly non-linear waves propagating
over varying depths. In the non-dispersive limit when

Cp ’ Cg ’ Cs ¼ ðghÞ1=2 the equations reduce to Airy’s
shallow water equations. If Cp and Cg are approxi-

mated to the second-order as Csð1� k2h2=6Þ and

Csð1� k2h2=2Þ respectively and used in the dispersive
terms yields the Boussinesq equations for varying
depth as given by Peregrine (1967).

By cross-differentiations and use of zeroth-order
relations for non-linear terms Equations (1) and (2)
may be combined into a single non-linear wave equa-
tion for ζ as detailed in Beji and Nadaoka (1997).
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p
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pð1�rÞ
rω2 �2ζtt � 3g
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� 	
�2 ζ2
� �

�� C2
p

r

� 	
� �ζ � 1

ω2 � ð1� rÞ C2
p

r

� 	
� C2

p

r �r
h i

� �ζtt ¼ 0

(3)

where r ¼ Cg=Cp ¼ 1=2ð1þ 2kh= sinh 2khÞ and �
stands for two-dimensional horizontal gradient operator
as before while subscript t denotes partial differentia-
tion with respect to time. Equation (3) differs slightly
from the equation given in Beji andNadaoka (1997) with
respect to the last two terms. If the zeroth-order relation
for harmonic motion ζtt ¼ �ω2ζ is used in the last term
and combined with the preceding linear shoaling term
the result becomes identical with that of Beji and
Nadaoka (1997). Further, removal of the harmonic
time-dependency from the relevant terms and neglect
of the non-linear term leads, after some manipulations,
to Berkhoff’s (1972) mild-slope equation, which in turn,
for constant depth gives the Helmholtz equation and
Lamb’s (1932) shallow water equation (p. 283) as special
cases.

3. New KP equation and its dispersion
relationship

A KP type equation based on the combined one-
component model of Beji and Nadaoka (1997) as
expressed in Equation (3) is now derived. The classical
approach proceeds by employing a non-dimensional
parameter for scaling the y-co-ordinate. Implicitly, the
parameter is assumed proportional to the ratio of
transverse wave number to the main propagation
wave number Ky=Kx . Then, except for the lowest-
order term all the transverse terms are dropped. In
this work, the discharge of these definite transverse
terms is carried out in an informal manner by pointing
out their physical functions. Namely, the dispersive
and non-linear terms containing the y � derivative
are all dropped as it is done by following purely
mathematical arguments.

3.1. KP type equation for arbitrary relative water
depths

For deriving a KP type equation from Equation (3)
the x � direction is taken as the main propagation
direction with all the relevant terms included while
in the y � direction only the term representing non-
dispersive linear propagation is retained. All the
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other y- dependent terms are dropped. Such a trun-
cation renders the propagation in the y-direction
linear and non-dispersive; however, it does not
imply a strictly weak-directionality as commonly
termed in the literature. The weakness in direction-
ality may be associated with the asymmetric propa-
gation properties of the final wave equation after the
equation is cast into a one-way propagation model
via co-ordinate transformation. The reduced form of
Equation (3) then reads

ζtt �
C2
p

r
ðζxx þ ζyyÞ �

C2
pð1� rÞ
rω2 ζxxtt � 3g

2r
3� 2r � ω2C2

p

g2

 !
ðζ2Þxx

� Cp
r2

ð2rCpx � CprxÞζx � Cp
r2ω2 ½2rð1� rÞCpx

� ð1þ rÞCprx�ζxtt ¼ 0

(4)

where Cpx and rx denote respectively the x � deri-
vatives of Cp and r ¼ Cg=Cp. A co-ordinate system
moving in the positive x � direction with the
phase velocity Cp is introduced so that the evolu-
tions of the wave form in this moving system are
slow, permitting to write the following new co-
ordinates:

σ ¼ x � Cpt; τ ¼ εt; (5)

where ε is a small parameter indicating the weak
changes of the wave form in time in the moving co-
ordinate system. Expressing the terms in Equation (4)
in the new co-ordinate system gives

ζtt ¼ C2
pζσσ � 2εCpζστ þ εCpCpσζσ;

ζxtt ¼ C2
pζσσσ � 2εCpζσστ þ εCpCpσζσσ; ζxx ¼ ζσσ;

ζxxtt ¼ C2
pζσσσσ � 2εCpζσσστ þ εCpCpσζσσσ

(6)

where the terms containing the spatial derivative of
Cp have also been labeled by ε to indicate they are an

order higher, and the terms proportional to ε2 are all
neglected. Substituting the expressions in Equation
(6) into Equation (4) and re-arranging results in

� 2εCpζστ �
C2
pð1� rÞ

r
ζσσ þ 2ε

C3
pð1� rÞ
rω2

ζσσστ

� C4
pð1� rÞ
rω2

ζσσσσ � αðζ2Þσσ þ εðCpCpσ � βÞζσ

� εC2
p

Cpð1� rÞCpσ
rω2

þ γ


 �
ζσσσ þ 2εγCpζσστ ¼

C2
p

r
ζyy;

(7)

where the coefficients α ¼ 3gð3� 2r � ω2C2
p=g

2Þ=2r,
β ¼ Cpð2rCpx � CprxÞ=r2, and γ ¼ Cp½2rð1� rÞCpx �
ð1þ rÞCprx�=r2ω2 have been introduced for the
ease of notation.

The next step is to put Equation (7) into a form
readily integrable with respect to σ. Therefore, noting
that both Cp and r are spatially varying quantities, the

following equalities correct to the second spatial deri-
vatives of Cp and r may be written

C2
pð1� rÞ

r
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pð1� rÞ
r
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r2


 �
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" #
σ
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rω2

ζσσστ ¼
C3
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rω2

ζσστ �
3C2

pð1� rÞrCpσ � C3
prσ

r2ω2

 !
ζστ

" #
σ

C4
pð1� rÞ
rω2

ζσσσσ ¼ C4
pð1� rÞ
rω2

ζσσσ �
4C3

pð1� rÞrCpσ � C4
prσ

r2ω2

 !
ζσσ

" #
σ

(8)

Making use of Equation (8) in Equation (7), re-arranging
and dividing the resulting equation by � 2Cp give

@

@σ
½εζτ þ Cpð1� rÞ

2r
ζσ � ε

C2
pð1� rÞ
rω2

ζσστ

þ C3
pð1� rÞ
2rω2

ζσσσ þ α

2Cp
ðζ2Þσ þ ε

Cpσ
2

ζ

þ ε
Cp
rω2

½ð1� rÞCpσ þ Cprσ�ζστ

� ε
C2
p

2rω2
½ð1� rÞCpσ þ Cprσ�ζσσ� þ Cp

2r
ζyy ¼ 0

(9)

The inverse transformation is carried out by using the
following expressions.

εζτ ¼ ζt þ Cpζx; εζστ ¼ ζxt þ Cpζxx; ζσ ¼ ζx; etc: (10)

Thus, the new KP type equation reads

@

@x
½ζt þ Cpð1þ rÞ

2r
ζx �

C2
pð1� rÞ
rω2

ζxxt �
C3
pð1� rÞ
2rω2
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þ α

2Cp
ðζ2Þx þ

Cpx
2

ζ þ Cp
rω2

½ð1� rÞCpx þ Cprx�ζxt

þ C2
p

2rω2
½ð1� rÞCpx þ Cprx�ζxx� þ Cp

2r
ζyy ¼ 0

(11)

where the equation inside the square brackets corre-
sponds to the KdV type equation given by Beji and
Nadaoka (1997). The only difference is in the linear
shoaling terms, which may all be combined into a
single term by invoking the zeroth-order relations
ζxx ¼ �k2ζ and ζxt ¼ kωζ, thus making it identical
with the term in Beji and Nadaoka (1997). Expanded
form of the new KP type equation is obtained by
performing the x � differentiation,

ζxt þ Cpð1þ rÞ
2r

ζxx �
C2
pð1� rÞ
rω2

ζxxxt �
C3
pð1� rÞ
2rω2

ζxxxx

þ α

2Cp
ðζ2Þxx þ

1
2r2

½rð1þ 2rÞCpx � Cprx�ζx

� Cp
r2ω2

½rð1� rÞCpx � ð1þ rÞCprx�ζxxt

� C2
p

2r2ω2
½2rð1� rÞCpx � ð1þ rÞCprx�ζxxx

þ Cp
2r

ζyy ¼ 0

(12)

where r ¼ Cg=Cp and α ¼ 3gð3� 2r � ω2C2
p=g

2Þ=2r as
defined before. The above KP type equation
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represents all the known KP-like equations as special
cases: for constant depth when Cpx ¼ 0 and rx ¼ 0,

setting Cp ’ Cs ¼ ðghÞ1=2 and r ¼ 1 in the coefficients

of ζxx , ζyy , ðζ2Þxx , and r ¼ Cg=Cp ’ ½Csð1�
k2h2=2Þ�=½Csð1� k2h2=6Þ� ’ 1� k2h2=3þ Oðk4h4Þ in
the coefficients of the dispersion terms ζxxxt and ζxxxx
as approximated by weakly dispersive theory
results in

ζxt þ Csζxx � h2

3
ζxxxt � Cs

h2

6
ζxxxx þ 3Cs

4h
ðζ2Þxx

þ Cs
2
ζyy ¼ 0;

(13)

where Cs ¼
ffiffiffiffiffiffi
gh

p
is the shallow water celerity. Equation

(13) has mixed dispersion terms but may be easily put
into the classical KP equation by using the zeroth-order
relationship ζt ¼ �Csζx in the third term so that �
ðh2=3Þζxxxt ¼ Csðh2=3Þζxxxx and the final dispersion
term becomes Csðh2=3Þζxxxx � Csðh2=6Þζxxxx ¼
Csðh2=6Þζxxxx as expected. On the other hand, replacing
the fourth term ζxxxx by � ζxxxt=Cs gives
� ðh2=3Þζxxxt þ ðh2=6Þζxxxt ¼ �ðh2=6Þζxxxt , which cor-
responds to the dispersion term in the KP-like equation
based on the so-called BBM model (Benjamin, Bona,
and Mahony, 1972). The terms proportional to Cpx and
rx provide the wave equation with linear shoaling
properties which are exact for sinusoidal waves having
the same frequency specified for the wave model. This
point is demonstrated in Section 5.1.

3.2. Dispersion relationship of KP equation

Dispersion relationship of the newly developed KP type
equation is now obtained. Let ζ ¼ ζ0 exp½iðKxx þ Kyy �
ΩtÞ� represent a sinusoidal incident wave moving in an
arbitrary direction on the xy plane, where the horizon-
tal two-dimensional wave propagation takes place.
Here, ζ0 is the constant wave amplitude, i the imagin-
ary unit, Ω the circular incident wave frequency, Kx ¼
K cos θ and Ky ¼ K sin θ the wave number components
in the x � and y � directions, respectively. θ ¼
arctanðKy=KxÞ is the angle wave propagation direction
makes with the x � axis. Substituting ζ into the linear-
ized, constant depth form of Equation (12) gives

Ω

Kx
¼ Cp

2

ð1þ rÞ þ C2
pð1� rÞðKx=ωÞ2 þ ðKy=KxÞ2

r þ C2
pð1� rÞðKx=ωÞ2

 !
;

(14)

where, as indicated before, Cp and r ¼ Cg=Cp are
computed according to linear theory for a specified
frequency ω and local depth h ¼ hðx; yÞ
using ω2 ¼ gk tanh kh.

Denoting CKP as the phase velocity vector of the KP
type equation and recalling the relationship between
the frequency and celerity Ω ¼ K � CKP with K ¼ Kxiþ

Ky2j for directional waves, the dispersion relationship
given by Equation (14) may be cast into the following
form for the phase velocity vector CKP of the new
equation:

CKP ¼ Cp
2

ð1þ rÞ þ C2
pð1� rÞðKx=ωÞ2 þ ðKy=KxÞ2

r þ C2
pð1� rÞðKx=ωÞ2

 !
Kx
K2


 �
K;

(15)

where K2 ¼ K2
x þ K2

y denotes the magnitude square of
the directional wave number vector K. The magnitude
of the phase celerity CKPj j divided by the shallow
water celerity Cs is

CKP
Cs

¼ 1
2

ð1þ rÞ þ ð1� rÞðKxh=khÞ2 þ ðKy=KxÞ2
r þ ð1� rÞðKxh=khÞ2

 !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tanh kh

khð1þ ðKy=KxÞ2Þ

s ;

(16)

where use has been made of ω ¼ kCp. The wave fre-
quency specified for the wave model, ω, may or may
not be the same as the incident wave frequency Ω.
When ω ¼ Ω then kh ¼ Kxh and for unidirectional case
Ky ¼ 0 the linear dispersion and shoaling characteris-
tics of the wave equation exactly matches with the
linear theory, CKP ¼ Cp. Linear theory dispersion rela-
tionship for directional waves with wave number K is

CEX
Cs

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tanh Kh

Kh

r
: (17)

For random waves with frequencies different
from the specified model frequency the match
with linear theory is not exact anymore but quite
acceptable in a narrow band of frequencies and for
relatively small angles as demonstrated in Figure 1
for directional waves by comparing CEX=Cs of linear
theory with CKP=Cs for four different direction
angles. The specified model frequency ω is selected
such that kh ¼ π=2 (intermediate water waves) and
Ky=Kx is assigned to tan θ while Kh is varied over
the range 0� 2π. Note that for calculating CKP=Cs as
a function of Kh, K2 ¼ K2

x þ K2
y is employed so that

Kxh ¼ Kh=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðKy=KxÞ2

q
which is the required vari-

able in Equation (16). As seen in Figure 1, the dis-
persion relation of the new KP model CKP=Cs does
not converge to unity when Kh tends to zero. There
are two different reasons to this; the first reason
originates from the characteristics of the wave
model of Nadaoka, Beji, and Nakagawa (1997). The
dispersion relationship of this particular wave
model makes a tangential contact with the exact
dispersion relation at the point Kh which corre-
sponds to the specified kh value of the wave
model. In the present example, ω for the wave
model is selected such that kh ¼ π=2. Therefore,
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for θ ¼ 0o the dispersion relation of the model is
exact at Kh ¼ kh ¼ π=2 but slowly diverges as Kh
goes in either direction: Kh ! 0 or Kh ! 1. On the
other hand, the dispersion relation of classical KP
equation is different. It is an asymptotic expansion
of the exact relation in the close vicinity of long
wave limit Kh ! 0 but diverges relatively rapidly as
Kh gets larger.

The second reason is the effect of wave directionality.
As the wave angle θ increases the dispersion relationship,
Equation (16), diverges from the exact form due to the

presence of ðKy=KxÞ2 term in the numerator. This diver-
gence is seen to be quite pronounced for θ ¼ 45o case of
Figure 1. For exactly the same reason exactly the same
behavior is observed for the dispersion relation of the
classical KP equation when the wave angle θ increases.
Indeed, directional wave behavior of the dispersion rela-
tionship for various wave angles demonstrated in
Figure 1 serves as archetype for any kind of KP equation.

4. Numerical scheme

Feng and Mitsui (1998) proposed an implicit finite-
difference scheme based on a Crank–Nicolson type
formulation for numerical solutions of the original
KdV and KP equations. In the same vein, Mekki and
Ali (2013) employed a Cranck–Nicolson discretization
for the solution of a KP equation derived from the
BBM equation of Benjamin, Bona, and Mahony (1972).
Finite-difference schemes are preferable for practical
applications therefore the new KP equation is discre-
tized by a Crank–Nicolson type implicit formulation
adapted from Feng and Mitsui (1998). While the pre-
sent KP equation is quite different from the one con-
sidered by Feng and Mitsui (1998) the finite-difference
formulation follows their scheme closely with the

exception of ζyy term, which is treated here in
uncoupled manner with appreciable improvement in
computational efficiency.

4.1. Finite-difference representation of new KP
equation

A Crank–Nicolson type finite-difference discretization
of Equation (12) results in

dxðζkþ1
i;j � ðζkþ1

i;j ζki;jÞÞ
2ΔtΔx

þ Ai;jδ
2
xðζkþ1
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2Δx2
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dxδ

2
xðζkþ1

i;j � ðζkþ1
i;j ζki;jÞÞ

2ΔtΔx3
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δ4xðζkþ1
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i;j ζki;jÞÞ

2Δx4

þ Di;j
δ2xðf kþ1

i;j þ f ki;jÞ
2Δx2

þ Ei;j
dxðζkþ1
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2Δx

� Fi;j
δ2xðζkþ1

i;j � ðζkþ1
i;j ζki;jÞÞ

ΔtΔx2

� Gi;j
dxδ

2
xðζkþ1

i;j ζki;jÞ
2Δx3

þ Hi;j
δ2yðζkþ1

i;j þ ðζkþ1
i;j ζki;jÞÞ

2Δy2
¼ 0

(18)

where the coefficients Ai;j; . . . ;Hi;j, etc. correspond
to those in Equation (12) in respective order. Note
that all the coefficients are spatially varying quan-
tities and computed at each grid point. The cen-
tered difference operators are defined as

dxζ
k
i;j ¼ ζkiþ1;j � ζki�1;j , δ2xζ

k
i;j ¼ ζkiþ1;j � 2ζki;j þ ζki�1;j,

dxδ
2
xζ

k
i;j ¼ ζkiþ2 � 2ζkiþ1;j þ 2ζki�1;j � ζki�2;j, and δ4xζ

k
i;j ¼
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Figure 1. Linear dispersion relationship of the new KP type equation for directional propagation compared with linear theory for
a range of Kh values. Four different propagation angles θ ¼ 0o; 15o; 30o, and 45o shown for a model frequency ω specification
corresponding to kh ¼ π=2 intermediate water waves.
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ζkiþ2 � 4ζkiþ1;j þ 6ζki;j � 4ζki�1;j þ ζki�2;j with i and j

denoting the indices multiplying the spacings Δx
and Δy between the grid points in the x � and

y � directions, respectively. δ2yζ
k
i;j is the

y � direction analogy of δ2xζ
k
i;j . Superscript k stands

for the time level index and gives the actual time
of simulation when multiplied by the time incre-
ment Δt. The non-linear function f ki;j is defined as

f ki;j ¼ ζki;jζ
k
i;j and the summation f kþ1

i;j þ f ki;j is

expressed in a semi-linear form f kþ1
i;j þ f ki;j ¼

2ζkþ1
i;j ζki;j as in Feng and Mitsui (1998) for carrying

out the implicit formulation without necessity of
iteration due to the non-linear term. The formal
approximation procedure may be found in Feng
and Mitsui (1998); the informal way of expressing

ζkþ1
i;j ζkþ1

i;j þ ζki;jζ
k
i;j as 2ζkþ1

i;j ζki;j may simply be accom-

plished by employing the approximation that

ðζkþ1
i;j � ζki;jÞ2 ’ 0 hence ζkþ1

i;j ζkþ1
i;j þ ζki;jζ

k
i;j ’ 2ζkþ1

i;j ζki;j.
Arranging Equation (18) by placing the unknown

new time level terms on the left and the known pre-
vious time level values and the complete ζyy discretiza-
tion on the right results in a penta-diagonal matrix
equation. A penta-diagonal system may be solved by
four sweeps: the first two sweeps reduce the system to
a tri-diagonal matrix and the next two sweeps solve
the tri-diagonal system. In the process employed here
the new time level values contained in ζyy on the right
are treated as known. However, in the first iteration
only the old time level values are used for computing
ζyy; the new time level values are introduced in sub-
sequent iterations. For numerical stability, this treat-
ment technique is found to be crucial. The uncoupled
treatment of ζyy necessarily requires iteration; only
three iterations are observed to be sufficient for quite
satisfying accuracy for all the cases presented here.

4.2. Treatment of boundaries

Test cases and practical applications usually use an
incoming boundary across which incident wave field
is introduced and an outgoing boundary where waves
are radiated away outside the computational domain.
Lateral boundaries are generally taken as imperme-
able side walls with the so-called mirror condition,
ζy ¼ 0, which is relatively simpler to implement.
Specification of incoming waves at the first node of
the domain is trivial; the prescribed incident wave
form is assigned numerically to the new time level

surface elevation ζkþ1
1;j of the first node at each time

step. Normally, the second and following nodes
should be computed from the discretized wave equa-
tion. Wave equations with spatially second-order deri-
vatives result in tri-diagonal matrix systems and pose
no problems in this aspect. However, in the present

case the presence of both third and fourth spatial
derivatives gives rise to a penta-diagonal system, as
indicated before. This problem may be overcome
either by one-sided discretization of these higher-
order derivatives or by simplifying the wave equation
itself by appropriate means. One-sided discretization
showed numerical instabilities and was abandoned.
Instead, Equation (12) has been simplified by the use
of the zeroth-order identities ζxx ¼ �k2ζ and ζxt ¼
kωζ in the dispersion and shoaling terms so that the
following equation has been used for the second,
third, and the ðn� 1Þ nodes.

ζxt þ Cpζxx þ αr
2Cp

ðζ2Þxx þ
1
2
½ð1þ 2rÞCpx

þ Cprx�ζx þ Cp
2
ζyy ¼ 0

(19)

The last node in the x � direction, n, requires further
care by backward differentiation of the second deriva-
tive. Frequently a radiation boundary condition is
implemented on the outgoing boundary. Such a con-
dition, being a further simplified and manipulated form
of Equation (19), is used simply because the full wave
equation cannot be discretized appropriately at or near
the last nodal point. Ideally, it should be the wave
equation itself propagating the waves out without
any interruption. Pursuing such an idea for
Boussinesq equations and comparing the results with
those obtained from the use of simple linear
Sommerfeld radiation condition Kiyokawa, Nadaoka,
and Beji (1996) showed the remarkable advantage of
using only the wave equations in preventing artificially
reflecting waves. In the present case, the KdV version
of Equation (19) with only first-order derivatives and
without 1

2 Cpζyy term is deemed suitable and used.

5. Simulations

Sample simulations are presented for exploring the
capabilities of the newly derived KP type equation.
First, unidirectional wave propagation over a sinusoid-
ally varying bottom topography is considered for inter-
mediate and short waves. Simulations are depicted
against theoretical wave envelopes drawn according
to the energy flux concept. Second, similar to the
cnoidal wave patterns experimentally produced by
Hammack, Scheffner, and Segur (1989), genuinely
two-dimensional obliquely intersecting cnoidal and
Stokes waves are produced numerically. The remark-
able point in these simulations is the ability of the new
KP model to produce not only shallow water cnoidal
waves but also deep water Stokes waves. Finally, non-
linear refraction-diffraction of waves over a converging
zone for three different periods are simulated and
corresponding harmonic amplitudes are compared
with the measurements of Whalin (1971).
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6. 1-D linear waves over varying bathymetry

While accurate prediction of wave heights is an essential
engineering requirement that would be improved much
via a reliable shoaling model, Stiassnie (2017), based on
the work of Bonnefoy et al. (2016), concludes that weakly
non-linear theories are satisfactory enough tomodel non-
linearities. As the inclusion of higher-order non-linearity is
not crucial in practical applications the present work
places particular emphasis on the accuracy of linear shoal-
ing prediction and presents here two sample cases of
linear wave propagation over a sinusoidally varying
depth. The water depth is initially h0 ¼ 10m, reduces to
hm ¼ h0=3 ¼ 3:33m at mid-length of channel and then
increases toh0 ¼ 10magain. Thewaveperiod is adjusted
such that at the channel entrance and exit h0=L0 ¼ 1=10
for the first case (long to intermediate incidentwaves) and
h0=L0 ¼ 1=2 for the second case (short incident waves).
The incident wave amplitude is set arbitrarily to a0 ¼ 1m
as the simulation is performed with linearized equation.
Figure 2 shows for both cases theperformanceof the new
KP type equation against the wave envelope drawn
according to the energy flux concept a2Cg ¼ Const:
withCg taken from theexact linear theory. The agreement
with theory for both cases is nearly perfect; such an
agreement confirms the reliability of the present model
in computing wave amplitude variations over varying
bathymetry for entire range of relative depths.

7. 2-D cnoidal and stokes waves

In order to demonstrate that the new KP equation is
capable of simulating shallow water cnoidal and deep

water Stokes waves equally well, two numerical simula-
tions of obliquely intersecting wave trains are performed.
For cnoidal waves, the period is T ¼ 2:89 s, the wave
height to water depth ratio H=h ¼ 0:05, and the elliptic
parameter m ¼ 1� 0:215, as selected from the labora-
tory experiments (CN2) of Goring and Reichlen (1980). For
Stokes waves, the period is T ¼ 3:57 s and the non-line-
arity parameter kSH ¼ 0:15 with kS denoting the wave
number according to the third-order Stokes theory. At
the incident boundary along the y � axis two separate
wave trains directed at angles þ θ and � θ to the
x � axis were generated and superposed. This superposi-
tion doubled the values of non-linearity parameters of
the incident wave fields for both cases. Generation of a
wave train with an angle to the x � axis was realized by
introducing a time phase lag of Δtl ¼ jΔy sin θ=c in the
argument of the wave function at each y � node
j ¼ 0; . . . ;m. This method is exactly the same as the
one used by Hammack, Scheffner, and Segur (1989) in
their laboratory experiments. The directed wave angle
was taken as θ ’ 19:5o so that the directed wavelength
in y � direction was three times the generating wave-
length Ly ¼ L= sin θ ¼ 3L for both cases while L ¼ 4m,
h=L ¼ 1=20 (shallow water) for cnoidal waves and
L ¼ 20m, h=L ¼ 1=2 (deep water) for Stokes waves.
Again for both cases the time resolution was Δt ¼
T=60 s and the spatial resolution in the propagation
direction was adjusted to give a Courant number that
was nearly unity. Due to numerical stability problems for
Δy,Δx the resolution in the y � direction was several
times coarser in comparison with the x � direction. The
simulation of deep water Stokes waves was more sensi-
tive in this aspect and required even coarser transverse
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Figure 2. Amplitude variation over a sinusoidally varying bathymetry. Envelopes (dashed lines) are computed from the
constancy of energy flux. Left: Long to intermediate incident waves, h0=L0 ¼ 1=10. Right: Short incident waves, h0=L0 ¼ 1=2.

Figure 3. Perspective views of obliquely intersecting cnoidal waves (left) and Stokes waves (right).
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grids. Figure 3 shows perspective views of fully devel-
oped cnoidal and Stokes wave fields.

7.1. Non-linear waves over a topographical lens

The last case considers non-linear wave conver-
gence over a bottom topography that acts as a
focusing lens (Whalin, 1971). The physical wave
tank used in the experiments was 84 ft ¼ 25:6m
long and 20 ft ¼ 6:096m wide. In the middle part
of the wave tank, 11 semicircular steps were evenly
spaced to form a topographical lens. The equations
defining the bottom are given in Whalin (1971).
Experiments were carried out by generating regular
sinusoidal waves with periods T ¼ 1; 2; and 3 s.
Primary wave and harmonic amplitudes along the
centerline of the wave tank were obtained at var-
ious stations.

Figure 4 shows the perspective view of the numer-
ical wave tank after 38 periods of simulation. The
converged and diverged regions of wave forms and
the relatively shortened length of the waves in the
shallow region near the end of the domain are nota-
ble features of the simulation. For all three cases, the
simulations were performed with a span-wise resolu-
tion Δy of 1=12 of the wave tank width. For incident
wave period T ¼ 1 s, the incident wave amplitude is
a0 ¼ 1:95 cm in water depth of h0 ¼ 0:4572m. The
time-step and the x � direction resolution were
respectively Δt ¼ T=50 s and Δx ¼ Lm=50m with Lm ¼
1:3m denoting the mean wavelength computed as
the average of the deep water h0 ¼ 1:5 ft ¼ 0:4572m
and shallow water hs ¼ 0:5 ft ¼ 0:1524m wave-
lengths, which are L0 ¼ 1:5m and Ls ¼ 1:1m. Note
that this case is very close to deep water conditions
since h0=L0 ¼ 1=3.

Figure 5 top graph depicts the measured data
and the computed results for the primary wave
and the first harmonic amplitudes for T ¼ 1 s
waves. In the middle the case for T ¼ 2 s and a0 ¼
0:75 cm is shown for the primary wave and two
harmonics. The bottom graph makes the same

comparisons for T ¼ 3 s and a0 ¼ 0:68 cm. All the
computations were carried out with Δt ¼ T=50
and Δx ¼ Lm=50.

Figure 4. A perspective view of the fully developed numerical wave tank for Whalin’s experiment of T ¼ 1 s waves.
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8. Concluding remarks

A Kadomtsev–Petviashvili type equation for the entire
range of relative water depths has been derived. The
newly derived equation is capable of simulating shal-
low and deep water waves equally well. Linear shoal-
ing characteristics, which are essential in accurate
wave height calculations, are tested for relatively
long and short waves propagating over varying
water depths with very satisfactory results. The new
wave model may be used for accurate estimation of
wave conditions for waves propagating from deep to
shallow regions.
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