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A B S T R A C T

A Kadomtsev-Petviashvili type equation with improved dispersion characteristics is derived for varying water
depths. Linear shoaling characteristics of the equation for unidirectional waves are in accord with the principle of
energy flux concept. A finite-difference scheme is devised to demonstrate the extended range of applications of
the newly derived equation for a number of well-known cases. In addition, a permanent wave form with sin-
gularity is shown to be an exact solution of the KdV or unidirectional KP equations. The same form for an arbitrary
direction satisfies the combined Boussinesq equations of any type.
1. Introduction

Kadomtsev and Petviashvili (1970) derived a directional version of
Korteweg and de Vries (1895) equation to study the stability of solitary
waves. Since then the Kadomtsev-Petviashvili equation or briefly the KP
equation has found widespread application areas, and its various forms
have been derived in the context of water waves. Bryant (1982) studied
obliquely intersecting permanent waves by deriving a set of nonlinear
equations which could describe fully-dispersive waves as well as weakly
dispersive waves of the KP type, depending on the choice of the co-
efficients. Hammack et al. (1989) generated finite-amplitude two-di-
mensional shallow water waves in laboratory and mathematically
described them by the exact solutions of the KP equation. Accurate rep-
resentation of waves outside the validity range of the KP equation was
indicated as a striking feature. Based on a Crank-Nicolson type formu-
lation Feng and Mitsui (1998) proposed an implicit finite-difference
scheme for numerical solutions of the original KdV and KP equations.
In the same vein, Mekki and Ali (2013) employed a Cranck-Nicolson
discretization for the solution of a KP equation derived from the
so-called BBM equation of Benjamin et al. (1972). Modeling of
dust-acoustic solitary wave in dusty plasmas by Xue (2003) may also be
mentioned as a rather unusual application of the KdV or KP equation.

The origin of the KP equation, like that of the KdV equation, may be
traced back to the work of Boussinesq (1872). The KdV equation is
one-dimensional Boussinesq equation transformed to propagate unidi-
rectional waves while the KP equation is directional form of the KdV
equation. The present work derives a KP type equation with relatively
better dispersion characteristics, based on a previous KdV type equation
for varying depths (Beji, 2016). The improved dispersion properties
uary 2018; Accepted 10 January 201
enable the new equation to propagate shorter waves quite accurately in
comparison with the existing KP models, which are basically restricted to
long waves. Further, the newly derived linear shoaling terms of the
present equation ensure that for unidirectional waves the shoaling rate is
in perfect accord with the energy flux concept.

Numerical treatment of the new KP equation is done by a Crank-
Nicolson type finite-difference formulation similar to Feng and Mitsui
(1998). Numerous test cases are carried out, starting with examination of
shoaling properties of the equation for varying bathymetry and
continuing with simulations of truly two-dimensional obliquely inter-
secting cnoidal waves as in the experiments of Hammack et al. (1989).
Then, nonlinear refraction-diffraction of waves over a converging zone as
experimentally measured by Whalin (1971) are simulated. Finally, a
rather difficult case of wave propagation over obliquely shoaling bottom
topography with an obliquely situated elliptic shoal given by Berkhoff
et al. (1982) is considered for comparisons with experimental results. All
these simulations show clearly that the KP type equation derived here is
capable of simulating shoaling, refraction and diffraction of relatively
shorter linear and nonlinear waves with acceptable accuracy. As rightly
noticed by Hammack et al. (1989), the capabilities of the KP equation are
not strictly restricted to weakly directional waves. The extend of direc-
tionality encompassed by the KP equation is quite good but only slightly
hindered by its linear non-dispersive character in transverse direction.

Finally, a peculiar permanent wave form analytically satisfying KdV
or unidirectional KP equation of any type as well as the combined form of
Boussinesq equations is obtained. The solution, being singular, is deemed
of secondary importance from the physical point of view hence placed in
the appendix.
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2. KP type equation for uneven water depths

Before proceeding to the derivation of the improved KP equation, the
derivation of a non-dispersive linear KP equation is considered briefly as
a preliminary to the general case.
2.1. KP type equation based on linear long wave model

In order to outline the derivation procedure for the simplest case
possible and at the same time to point out an interesting connection with
the radiation boundary condition of Engquist and Majda (1977), first a
KP-like equation is derived from the linear long wave equations. For
constant depth the linearized shallow water equations are given by
(Dingemans, 1997)

ηt þ hr⋅u ¼ 0 (1)

ut þ grη ¼ 0 (2)

where u is the vertically averaged or mean horizontal velocity vector
with components ðu; vÞ and η is the free surface displacement as measured
from the still water level. h is the water depth and g is the gravitational
acceleration. r stands for two-dimensional horizontal gradient operator
with components ð∂=∂x; ∂=∂yÞ while subscript t denotes partial differen-
tiation with respect to time. By cross differentiations the above equations
may be combined into a single equation in terms of η

ηtt � C2
�
ηxx þ ηyy

� ¼ 0 (3)

in which C ¼ ffiffiffiffiffi
gh

p
is defined as the non-dispersive phase celerity. A co-

ordinate system moving in the positive x�direction with the celerity C
is now introduced so that wave form evolutions in this moving system are
slow. New spatial σ ¼ x � Ct and temporal τ ¼ εt co-ordinates are
employed with the small parameter ε indicating the weak changes of
wave form in time in the moving co-ordinate system. No approximation
has been introduced for the y�direction. However, the new co-ordinate
system moves at the celerity C only in the x�direction, which is the
preferred direction of the propagation; while directional waves would
have a propagation velocity vector not necessarily in the x�direction.
Thus, favoring a certain direction in ðσ; τÞ transformation would result in
an unsymmetric wave equation. That is to say, unlike equation (3), the
transformed equation would not be the same when x and y are inter-
changed. Expressing the terms in equation (3) in the new co-ordinate
system gives

ηtt ¼ C2ησσ � 2Cεηστ; ηxx ¼ ησσ (4)

where the term Oðε2Þ has been dropped as being higher-order than
intended to keep. Substituting the above expressions for the relevant
terms in equation (3) while keeping the y�direction term intact results in

�2Cεηστ � C2ηyy ¼ 0 (5)

Going back to the original co-ordinate system requires the inverse
transformation εηστ ¼ ηxt þ Cηxx, which is substituted into equation (5)
and the entire equation is divided by �2C to obtain

ηxt þ Cηxx þ
1
2
Cηyy ¼ 0 (6)

which may be viewed as the linearized shallow water version of the KP
equation. Solving equation (3) for ηxx and using it in equation (6) renders
the second-order radiation boundary condition ηtt þ Cηxt � 1

2C
2ηyy ¼ 0

(in dimensional form for right-going waves) derived by Engquist and
Majda (1977) for directional waves. In this respect equation (6) suggests
itself as a suitable boundary condition: it has no missing terms compared
to equation (3) but supports only those waves moving in the positive
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x�direction. In other words, while only right-going waves are permitted
left-going waves are not allowed and at the same time directional radi-
ation of waves has not been compromised.

2.2. KP type equation based on improved Boussinesq model

Beji and Nadaoka (1996) introduced the concept of partial replace-
ment of dispersion terms to the Boussinesq model of Peregrine (1967) for
varying water depths. Their improved model, comprising continuity and
momentum equations, may be combined into a single nonlinear wave
equation in terms of the surface displacement η by suitable approxima-
tions to obtain

ηtt ¼ ghr2η� β

3
gh3r2

�r2η
�þ ð1þ βÞ

3
h2r2ηtt þ

3
2
gr2

�
η2
�

þgrh⋅rη� 2βgh2rh⋅r�r2η
�þ ð1þ βÞhrh⋅rηtt

(7)

in which only the terms containing the first spatial derivative of the depth
are retained. Truncation of higher depth gradients corresponds to the
mild-slope assumption, which is used throughout the present work
wherever necessary. The coefficient β is a non-dimensional scalar con-
trolling the dispersion characteristics of the equation. While β ¼ �1 for
1-D results in the original derivation of Boussinesq (1872), β ¼ 0 corre-
sponds to the combined form of Peregrine's (1967) equations. Setting β ¼
1=5 results in an improved dispersion relationship which is in accord
with the fourth-order Pad�e approximation of the linear theory dispersion
relation.

In order to derive a KP type equation from equation (7) the
x�direction is taken as the main propagation direction with all the
relevant terms while only non-dispersive propagation in the y�direction
is retained as in equation (3). All the other y�dependent terms; namely,
the nonlinear, dispersive, and shoaling terms in the y�direction, are
dropped. Such a truncation renders the propagation in the y�direction
linear and non-dispersive and results in

ηtt ¼ gh
�
ηxx þ ηyy

�� β

3
gh3ηxxxx þ

ð1þ βÞ
3

h2ηxxtt þ
3
2
g
�
η2
�
xx

þghxηx � 2βgh2hxηxxx þ ð1þ βÞhhxηxtt
(8)

With the exception of ηyy term the derivation procedure of the KP type
equation from equation (8) is completely identical with the derivation of
the KdV type equation given in Beji (2016) and therefore is not repeated
here. Retaining ηyy term throughout and refraining from the final spatial
integration results in a generalized KP type equation for uneven depths:

�
ηt þ Cηx � pCh2ηxxx � qh2ηxxt þ

3C
4h

�
η2
�
x þ

C
4h
hxη� rChhxηxx � shhxηxt

�
x

þ1
2
Cηyy ¼ 0

(9)

where the non-dimensional coefficients p ¼ ð1þ 2βÞ=6, q ¼ ð1þ βÞ=3,
r ¼ ð15þ 32βÞ=24, s ¼ 5ð1þ βÞ=6 are employed for the sake of a simpler
notation as introduced in Beji (2016). Performing the differentiation
while noting that both h and C are spatially varying quantities gives
another form of equation (9)

ηxt þ Cηxx � pCh2ηxxxx � qh2ηxxxt þ
3C
4h

�
η2
�
xx

þ3C
4h

hxηx � rpChhxηxxx � sqhhxηxxt þ
1
2
Cηyy ¼ 0

(10)

in which rp ¼ r þ 5p=2 and sq ¼ sþ 2q, and the second derivatives of h
are neglected. The above KP type equation embodies all the known KP
type equations as special cases: for constant depth setting β ¼ �1
(p ¼ �1=6, q ¼ 0) gives the original KP equation while β ¼ �1=2 (p ¼ 0,
q ¼ 1=6) gives the KP equation corresponding to the KdV model of
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Benjamin et al. (1972), the so-called BBMmodel. Moreover, the equation
contains terms accounting for depth variations so that it can model
changes in wave amplitude due to changes in water depth. Accuracy and
consistency of shoaling characteristics of the unidirectional version; that
is to say, the corresponding KdV equation has already been investigated
analytically and shown that shoaling properties of the model equation
are in exact agreement with those obtained from the constancy of energy
flux (Beji, 2016). In this connection it is worthwhile to remark that
Dingemans (1997) enumerates and presents derivations of various
available KdV and KP type equations but none has the key shoaling terms
derived above. Here, these shoaling characteristics are exploited
numerically for equation (10) and their importance for reliable simula-
tions in coastal regions with varying bathymetry is demonstrated.
2.3. Dispersion relationship of improved KP equation

Dispersion characteristics of the generalized KP type equation are
now examined. Let η ¼ a0 exp ½iðkxx þ kyy � ωtÞ� with a0 denoting the
constant wave amplitude, i the imaginary unit, ω the circular wave fre-
quency, kx ¼ k cos θ and ky ¼ k sin θ the wave number components in
the x� and y�directions, respectively. θ is the angle wave propagation
direction makes with the x�axis. Substituting η into the linearized,
constant-depth form of equation (10) gives for ω,

ω ¼ C

0
@1þ pk2x h

2 þ 1
2

�
k2y
.
k2x
�

1þ qk2x h2

1
Akx (11)

where, as indicated before, C ¼ ffiffiffiffiffi
gh

p
is the non-dispersive shallow water

wave celerity. Denoting CKP as the phase velocity vector of the general-
ized KP type equation and recalling the relationship between the fre-
quency and velocity ω ¼ k⋅CKP with k ¼ kx iþ ky j for directional waves,
the dispersion relationship given by equation (11) may be cast into the
following form for the phase velocity vector CKP of the new KP type
equation:

CKP ¼ C

0
@1þ 1

6 ð1þ 2βÞk2x h2 þ 1
2

�
k2y
.
k2x
�

1þ 1
3 ð1þ βÞk2x h2

1
A	

kx
k2



k (12)

Use has been made of p ¼ ð1þ 2βÞ=6 and q ¼ ð1þ βÞ=3 as defined
before. The form of the dispersion relation corresponding to the unidi-
rectional wave propagation in the x�direction is considered for selecting
the optimal β value. For unidirectional waves θ ¼ 0 then kx ¼ k and
ky ¼ 0, which renders the above dispersion relationship identical with
the improved or generalized KdV equation presented in Beji (2016).
Without repeating the arguments and analysis presented in detail in Beji
(2016) there are basically two prominent choices for β; namely,�1=20 or
0. If the dispersion relationship is to correspond to the fourth-order Pad�e
approximation of the exact relationship, β ¼ �1=20 is the choice; on the
other hand, if the shoaling characteristics of the equation is to be in
perfect agreement with the energy flux concept, β ¼ 0 should be
preferred. Simulations indicate negligible differences between the two
choices while finite-difference scheme is in general observed to be more
robust for the choice of β ¼ �1=20 as the coefficient of ηxxxx becomes
somewhat smaller and thus increases the stability of the scheme. Besides
these two choices, different options are possible. For instance, one may
prefer to improve the dispersion characteristics further hence seek a best
fit to the exact dispersion curve within a preset kh range by adjusting β.

3. Numerical scheme

Finite difference schemes (Katsis and Akylas, 1987; Feng and Mitsui,
1998; Mekki and Ali, 2013) are preferable for practical applications
therefore the improved KP equation is discretized by a Crank-Nicolson
type implicit formulation adapted from Feng and Mitsui (1998). While
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the present KP equation is substantially different from the one solved by
Feng and Mitsui (1998) the finite difference formulation follows their
scheme closely with the exception of the treatment of ηyy term, which is
considered here in uncoupled manner with appreciable improvement in
computational efficiency.
3.1. Finite difference representation of improved KP equation

A Crank-Nicolson type discretization of equation (10) renders the
following finite difference formulation.

dx
�
ηkþ1
i;j � ηki;j

�
2ΔtΔx

þ Ci;j

δ2x

�
ηkþ1
i;j þ ηki;j

�
2Δx2

� pCi;jh2i;j
δ4x

�
ηkþ1
i;j þ ηki;j

�
2Δx4

�qh2i;j
dxδ2x

�
ηkþ1
i;j � ηki;j

�
2ΔtΔx3

þ 3C
4h

δ2x

�
f kþ1
i;j þ f ki;j

�
2Δx2

þ 3C
4h

dxhi;j
2Δx

dx
�
ηkþ1
i;j þ ηki;j

�
4Δx

�rpCi;jhi;j
dxhi;j
2Δx

dxδ2x
�
ηkþ1
i;j þ ηki;j

�
4Δx3

� sqhi;j
dxhi;j
2Δx

δ2x

�
ηkþ1
i;j � ηki;j

�
ΔtΔx2

þ

1
2
Ci;j

δ2y

�
ηkþ1
i;j þ ηki;j

�
2Δy2

¼ 0

(13)

where the centered difference operators are defined as
dxηki;j ¼ ηkiþ1;j � ηki�1;j, δ2xη

k
i;j ¼ ηkiþ1;j � 2ηki;j þ ηki�1;j, dxδ2xη

k
i;j ¼ ηkiþ2 �

2ηkiþ1;j þ 2ηki�1;j �ηki�2;j, and δ4xη
k
i;j ¼ ηkiþ2 � 4ηkiþ1;j þ 6ηki;j � 4ηki�1;j þ ηki�2;j

with i and j denoting the indices multiplying the spacings Δx and Δy
between the grid points in the x� and y�directions, respectively. δ2yη

k
i;j is

the y�direction analogy of δ2xη
k
i;j. Superscript k stands for the time level

index and gives the actual time of simulationwhenmultiplied by the time
increment Δt. Note that both water depth and non-dispersive celerity are
spatially varying quantities and defined at each grid point. The nonlinear
function f ki;j is defined as f ki;j ¼ ηki;jη

k
i;j and the summation f kþ1

i;j þ f ki;j is

expressed in a semi-linear form f kþ1
i;j þ f ki;j ¼ 2ηkþ1

i;j ηki;j as in Feng and
Mitsui (1998) for carrying out the implicit formulation without necessity
of iteration due to the nonlinear term. The formal approximation pro-
cedure may be found in Feng andMitsui (1998), the informal approach of
expressing ηkþ1

i;j ηkþ1
i;j þ ηki;jη

k
i;j as 2η

kþ1
i;j ηki;j may simply be attributed to the

approximation that ðηkþ1
i;j � ηki;jÞ

2 ’ 0 hence ηkþ1
i;j ηkþ1

i;j þ ηki;jη
k
i;j ¼ 2ηkþ1

i;j ηki;j.
Arranging equation (13) by placing the unknown new time level

terms on the left and the known previous time level values and the
complete ηyy discretization on the right results in a penta-diagonal matrix
equation. Such a system of equations may be solved by four sweeps; the
first two sweeps for reducing the system to a tri-diagonal matrix, and the
next two sweeps for solving the tri-diagonal system. In this process the
new time level values contained in ηyy on the right are treated as known
in the first iteration by using only the old time level values and then
introducing the new time level values in subsequent iterations. Indeed,
for numerical stability this is found to be quite essential. The uncoupled
treatment of ηyy necessarily requires iteration. During this iterative pro-
cess, the semi-linearized form of the nonlinear term is avoided after the
first iteration and the newly computed ηkþ1

i;j values are used in subsequent
iterations in the nonlinear term without resorting to the linearization
process. However, such double treatment procedure showed negligible
difference when compared with semi-linearized treatment alone. Finally,
only three iterations are observed to be sufficient for quite satisfying
accuracy for all the cases presented here.
3.2. Treatment of boundaries

Test cases and practical applications usually require an incoming



Fig. 1. Amplitude variation over a sinusoidally varying bathymetry. Enve-
lopes (dashed lines) are computed from the constancy of energy flux. Upper
graph is for BBM type KP model with only long-wave shoaling term, lower
graph is for the new KP model with all the linear shoaling terms.
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boundary across which incident wave field is introduced and an outgoing
boundary where waves are radiated away outside the computational
domain. Lateral boundaries are taken as impermeable side walls with the
so-called mirror condition, ηy ¼ 0, which is relatively simpler to imple-
ment. Introduction of incoming waves at the first node of the domain is
trivial, the prescribed incident wave form is assigned numerically to the
new time level surface elevation ηkþ1

1;j of the first node at each time step.
Normally, the second and following nodes should be computed from the
discretized wave equation. Wave equations with spatially second order
derivatives result in tri-diagonal matrix systems and pose no problem in
this aspect. However, in the present case the presence of both third and
fourth spatial derivatives gives rise to a penta-diagonal system, as indi-
cated before. This problem may be overcome either by one-sided dis-
cretization of these higher order derivatives or by simplifying the wave
equation itself by appropriate means. One-sided discretization showed
numerical instabilities and was abandoned. Instead, the unidirectional
form of equation (10) in absence of 12Cηyy term has been simplified by the

use of linear wave identity ηxx ¼ �k2xη only in the dispersion and shoaling
terms so that the following equation, equation (14), has been discretized
for the second, third, and the last two nodes. The last node requires a
further care by backward differentiation of the second derivative.

�
1þ qk2x h

2
�
ηxt þ C

�
1þ pk2x h

2
�
ηxx þ

3C
4h

�
η2
�
xx

þ3C
4h

hxηx þ rpCk2x hhxηx þ sqk2x hhxηt ¼ 0
(14)

Frequently a radiation boundary condition is implemented on the
outgoing boundary. Such a condition, being a further simplified form of
the wave equation, is used simply because the wave equation itself
cannot be discretized appropriately at or near the last nodal point. In this
connection, use of equation (6) or its variant as proposed by Engquist and
Majda (1977) may be considered as a possible choice. Ideally it should be
the wave equation itself propagating the waves out without any inter-
ruption. Pursuing such an idea for Boussinesq equations and comparing
the results with those obtained from the use of simple linear Sommerfeld
radiation condition, Kiyokawa et al. (1996) showed the remarkable
advantage of using only the wave equations in preventing artificially
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reflecting waves. In the present case, the simplified form of the wave
equation as given by (14) with 1

2Cηyy term is deemed quite suitable.

4. Test cases

Four different tests are considered for exploring the capabilities of the
newly derived KP type equation, especially over uneven depths. First, a
relatively short unidirectional wave propagation over a sinusoidally
varying bottom topography is simulated by the BBM type KP with only
the long-wave shoaling term and by the improved KP with entire linear
shoaling terms present. Both simulations are compared with the theo-
retical energy flux concept. Second, similar to the experimental mea-
surements of Hammack et al. (1989), genuinely two-dimensional
obliquely intersecting cnoidal waves are produced numerically by
using experimentally realizable cnoidal wave parameters given in Goring
and Raichlen (1980). Third, nonlinear refraction-diffraction of waves
over a converging zone for three different periods are simulated and
corresponding harmonic amplitudes are compared with the measure-
ments of Whalin (1971). Finally fourth, the challenging case of wave
propagation over obliquely shoaling bottom topography and obliquely
situated elliptic shoal is simulated and wave height variations for definite
sections are compared with the experimental measurements given in
Berkhoff et al. (1982). Computations for all the test cases were carried
out by performing three iterations at every time step as numerical
convergence tests with four or five iterations revealed no sensible dif-
ference in results.
4.1. 1-D linear waves over bathymetry

Applications in coastal zone demand in the first place good linear
shoaling characteristics as waves mainly propagate over varying water
depths. Taking linear wave propagation as the zeroth-order contribution,
shoaling may be accounted as a first-order effect, and inaccuracies in its
estimation cannot be compensated by any other mechanism. For
instance, inclusion of high order nonlinear effects would not be justifi-
able at all while lacking the proper mechanism of linear shoaling.
Particularly for a depth-integrated wavemodel, for which full description
of highly nonlinear wave motions is barred by the underlying theoretical
framework itself, improving on nonlinearity would merely be superflu-
ous. Furthermore, as pointed out by Stiassnie (2017) based on the work
of Bonnefoy et al. (2016), weakly nonlinear theories are quite satisfactory
to model nonlinearities hence inclusion of higher-order nonlinearity is
not needed in practical applications. On the other hand, prediction of
wave heights is an essential engineering requirement that would improve
much by a reliable shoaling model. The present work thus places as much
emphasis on the accuracy of linear shoaling prediction as on the accuracy
of linear dispersion characteristics.

As a demonstration, linear wave propagation over a sinusoidally
varying depth is simulated. Similar simulations over varying bathymetry
have been reported in the relevant literature (e.g. Madsen and Sørensen,
1992; Simarro et al., 2013) for testing the linear shoaling capabilities of
wavemodels. All these comparisons, as in here, reveal the accuracy of the
proposed models for uneven depths. The water depth is initially
h0 ¼ 10 m, reduces to hm ¼ h0=2 ¼ 5 m at mid-length of channel and
then increases to h0 ¼ 10 m again. The wave period is T ¼ 8 s so that at
the channel entrance and exit h0=L0 ’ 1=7 while at mid-length of
channel hm=Lm ’ 1=10, both ratios indicating intermediate water waves.
In Fig. 1 the upper graph shows the performance of the BBM type KP
equation corresponding to β ¼ �1=2 with only the kinematic or
long-wave shoaling term 3C

4hhxηx present but the dynamic shoaling terms
absent rp ¼ 0, sq ¼ 0. The lower graph shows the same simulation for the
present KP equation with β ¼ �1=20 and all the linear shoaling terms
included. The wave envelope is drawn according to the energy flux
concept a2Cg ¼ Const: with Cg taken from the exact linear theory. While
the BBM type KPmodel, which may be considered as the best available in



Fig. 2. A perspective view of obliquely intersecting cnoidal waves.

Fig. 3. Top: Whalin's experiments for incident waves of T ¼ 1 s. Middle:
Incident waves of T ¼ 2 s. Bottom: Incident waves of T ¼ 3 s. Measured and
computed harmonic amplitudes along the centerline of the wave tank. Solid
line: computation, scatter: experimental data.
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literature, overestimates the amplitude more than 30% in mid-channel
where the water depth is minimum, the present model simulation
agrees with the linear theory almost perfectly.
4.2. 2-D cnoidal waves

Experiments of Goring and Raichlen (1980) revealed that physically
realizable permanent cnoidal waves exist only for definite H=h, h=L and
m values where H is the wave height, h the water depth, L the wave-
length, and m the elliptic parameter. The wave form of H=h ¼ 0:05,
h=L ¼ 0:05, m ¼ 1� 0:215 (CN2) from their laboratory experiments was
selected for producing obliquely intersecting cnoidal waves in the
manner of Hammack et al. (1989). The case is intended as a demon-
stration of the ability of the wave model to simulate nonlinear directional
waves.
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At the incident boundary along the y�axis two separate cnoidal wave
trains directed at angles þθ and �θ to the x�axis were generated and
superposed. Generation of a wave train with an angle to the x�axis was
realized by introducing a time phase lag of Δtl ¼ jΔy sin θ=c in the
argument of the cnoidal function at each y�node j ¼ 0;…;m. This
method is exactly the same as the one used by Hammack et al. (1989) in
their laboratory experiments. Here, the directed wave angle was taken as
θ ¼ 25o and the directed wavelengths in the x� and y�directions
respectively were Lx ¼ L=cos θ ¼ 4:4 m, Ly ¼ L=sin θ ¼ 9:5 m with L ¼
4:0 m being the wavelength of generating cnoidal wave. The time and
spatial resolutions used were Δt ¼ T=60 s, Δx ¼ Lx=88 m, and
Δy ¼ Ly=22 m. The computations were done for 12 wave periods,
allowing the wave field to develop fully in the entire computational
domain. The length of the computational domain was taken as 15L ¼
60 m and the width of the computational domain was set twice the
wavelength in the y�direction 2Ly ¼ 19 m. Fig. 2 gives a perspective
view for a region of 3Lx � 2Ly at t ¼ 11:5T.
4.3. Waves converging over topographical lens

The third case considers waves converging over a bottom topography
that acts as a focusing lens (Whalin, 1971). The waves propagating over
the topography converge along the mid-section of the tank and grow in
amplitude, becoming nonlinear. Accordingly, higher harmonics develop
and evolve with propagation distance. The experimental measurements
capture these variations of the primary wave and harmonics.

The physical wave tank used in the experiments was 84 ft ¼ 25:6 m
long and 20 ft ¼ 6:096 m wide. In the middle part of the tank eleven
semicircular steps were evenly spaced to form a topographical lens. The
equations describing the topography can be found in Whalin (1971).
Experiments were carried out by generating regular waves with periods
T ¼ 1; 2; and 3 s. Primary wave and harmonic amplitudes along the
centerline of the wave tank were measured at various stations.

For all three cases the simulations were performed with a span-wise
resolution Δy of 1=12 of the wave tank width. For incident wave
period T ¼ 1 s, the incident wave amplitude is a0 ¼ 1:95 cm in water
depth of h0 ¼ 0:4572 m. The time-step and the x�direction resolution
were respectively Δt ¼ T=50 s and Δx ¼ Lm=50 m with Lm ¼ 1:3 m
denoting the mean wavelength computed as the average of the deep-
water h0 ¼ 1:5 ft ¼ 0:4572 m and shallow-water hs ¼ 0:5 ft ¼ 0:1524 m
wavelengths, which are L0 ¼ 1:5 m and Ls ¼ 1:1 m. Note that this case is
very close to deep water conditions as h0=L0 ¼ 1=3.

Fig. 3a compares the measured data and the computed results for the
primary wave and the first harmonic amplitudes for T ¼ 1 s waves. In
Fig. 3b the case for T ¼ 2 s and a0 ¼ 0:75 cm is shown for the primary
wave and two harmonics. Fig. 3c gives the same comparisons for T ¼ 3 s
and a0 ¼ 0:68 cm. As for T ¼ 1 s case, computations for the last two cases
were carried out with Δt ¼ T=50 and Δx ¼ Lm=50.

In this connection it is worthwhile to mention the work of Engsig--
Karup et al. (2009), which is based on a fully nonlinear potential flow
model. Their simulations of Whalin's (1971) experiments compare well
with the data as in here while for the case of T ¼ 1 s the primary wave
amplitude is predicted better than the present simulation. This difference
in accuracy is likely to be due to the restricted dispersive properties of the
current model in deeper waters.
4.4. Waves over an elliptic shoal on a slope

Berkhoff et al. (1982) compared different wave model predictions
with measurements for a rather difficult case of wave propagation over
obliquely shoaling bottom topography and obliquely oriented elliptic
shoal, making 20o angle with incoming wavefronts. The physical domain
covered an area of 25 m� 20 m. The incident waves had the amplitude
to depth ratio a0=h0 ¼ 0:05155 and T ¼ 1 s period on h0 ¼ 0:45 m water
depth resulting in h0=L0 ¼ 1=3:4, a relative depth very near Whalin's T ¼



Fig. 4. A perspective view of the fully-developed numerical wave tank for
experiment reported in Berkhoff et al. (1982).
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1 s period case. The depth in the shallowest region over the shoal was
reduced to very nearly hs ¼ 0:1 m. The results given here were produced
from a computation with Δt ¼ T=60 s, Δx ¼ Lm=60 m, Δy ¼ W=80 m for
actual duration of 31 wave periods. Here, Lm ¼ 1:2 m denotes the mean
wavelength andW ¼ 20 m indicates the width of the experimental basin.
During the last two periods of computation the maxima and minima were
determined at grid points along the measurement sections for obtaining
the wave heights.

Fig. 4 shows the perspective view of the numerical wave tank after 31
periods of simulation. The converged and diverged regions of wave forms
and the cnoidal character of the waves in the shallow region near the end
of the domain are notable features of the simulation.

Comparisons with the experimental measurements are done for eight
sections as given in Berkhoff et al. (1982). The first five sections (Section
231
1–5) are crosswise, taken here as the y�direction, while the next three
sections (Section 6–8) are lengthwise along the propagation direction,
the x�direction. Fig. 5a–e shows the transverse y�direction sections,
zero denoting the mid-section in x�direction, comparing the experi-
mental measurements with numerical simulations. Fig. 5f–h make the
same comparisons for the longitudinal sections. The transverse sections
are in better agreement with the measurements when compared with the
longitudinal sections. This is usually true for other reported numerical
models as for instance, Panchang et al. (1991) who show improved
computations by using a nonlinear dispersion relationship in their
essentially linear mild-slope equation model. Likewise, a numerical
technique used in Engsig-Karup (2014) for fully nonlinear potential
model reveals excellent agreement for all the measurement sections of
Berkhoff et al. (1982). Here, the linear nature of the KP equation in the
y�direction is likely to contribute to those observed discrepancies;
however, this weakness alone may not be the only responsible element
because disagreements are more prominent in the x�direction sections.
Shortcomings associated with nonlinear dispersion characteristics of the
model are too likely to play a role in these discrepancies.

5. Concluding remarks

A Kadomtsev-Petviashvili type equation for uneven water depths is
derived. The new equation has improved linear dispersion and linear
shoaling characteristics that extend its applicable range to virtually deep
water waves. Quite challenging test cases are considered for checking the
performance of the new equation against theoretical predictions and
experimental measurements. In particular, linear dispersion and shoaling
characteristics of the equation are quite satisfactory, allowing accurate
estimation of wave heights over varying depths ranging from relatively
Fig. 5. Sections 1–5 are crosswise and Sections 6–8 are
lengthwise comparisons of numerical simulations (solid line)
with the experimental measurements (scatter) for the exper-
iments of Berkhoff et al. (1982). Vertical scale is the
normalized wave height.
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deep to very shallow depths. The wave model may be used for accurate
Fig. 6. Wave form according to ηðx; tÞ ¼ �4h=3½ðx � Ct
truncated at 0:95h. Vertical and horizontal axes are nor
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estimation of wave conditions in nearshore regions.
Appendix

The curve known as the “Witch of Agnesi” is defined in cartesian co-ordinates as

y ¼ D

ðx=DÞ2 þ 1
(.1)

where D is a constant denoting the diameter of generating circle. This curve was first studied by Pierre de Fermat in 1630. Guido Grandi, who gave a
construction of the curve in 1703, suggested the name versiera from the Latin word vertere: to turn. Later, Maria Gaetana Agnesi (1718–1799), a
remarkable woman mathematician, studied the same curve. After translation of Agnesi's book “Instituzioni Analitiche” into English the curve has
become known as the “Witch of Agnesi”. Supposedly, in the translation the term versiera used by Grandi was mistaken for the Italian word avversiera:
witch.

Wavelike shape of the Witch of Agnesi suggests an analytical solution similar in form. After trying a more general expression of the form
A=½ðx � CtÞn þ B�, where A, B, and n are parameters to be determined and C ¼ ffiffiffiffiffi

gh
p

is the non-dispersive celerity, the following reduced form has been
obtained for B ¼ 0, n ¼ 2.

ηðx; tÞ ¼ A

ðx� CtÞ2 (.2)

Note that the form has a singularity at x ¼ Ct. Singular solutions of this type for classic KdV equation have been treated in the literature (Boya, 2004;
Byers and Himonas, 2004) but not for a generalized KdV equation in dimensional form as considered here

ηt þ Cηx � pCh2ηxxx � qh2ηxxt þ ð3C=4hÞ�η2�x ¼ 0 (.3)

Substituting equation (.2) into equation (.3) results in

2AC

ðx� CtÞ3 þ C
ð�2AÞ

ðx� CtÞ3 � pCh2
ð�24AÞ
ðx� CtÞ5 � qh2

ð24ACÞ
ðx� CtÞ5

þð3C=4hÞ ð�4A2Þ
ðx� CtÞ5 ¼ 0

(.4)

The first two terms cancel each other out; the remaining terms are gathered together as

�
24ph2 � 24qh2 � ð3A=hÞ� AC

ðx� CtÞ5 ¼ 0 (.5)

Terms inside the square brackets are the dispersive and nonlinear terms, which clearly show that if a permanent wave form is to be maintained they
must be balanced. Equating these terms to zero requires A ¼ 8ðp� qÞh3. Recalling that p ¼ ð1þ 2βÞ=6 and q ¼ ð1þ βÞ=3 gives A ¼ �4h3=3, which is
independent of β hence valid for any kind of KdV type equation. The final form of the solution is then

ηðx; tÞ ¼ � 4h

3½ðx� CtÞ=h�2 (.6)

The KP equation in its directional form does not admit any such solution in an arbitrary direction due to its unsymmetric properties with respect to
x� and y� directions. However, the combined form of the generalized Boussinesq equation, equation (7) for constant depth, being symmetrical in both
directions, does admit a solution of the form regardless of the β value:

ηðx; y; tÞ ¼ � 4h

3½ðx cos θ þ y sin θ � CtÞ=h�2 (.7)

where θ is the angle the wave velocity vector makes with the x�axis.
The above solutions, though they satisfy the respective wave equations exactly, have several peculiar aspects. First, the form is always a wave of

depression remaining below the free surface. Second, it travels at the non-dispersive celerity C ¼ ffiffiffiffiffi
gh

p
instead of a celerity which is a function of
Þ=h�2 for three different instances with singularities
malized by the water depth h.
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amplitude as is the case for nonlinear waves. Third, it is obviously singular at x ¼ Ct or x cos θ þ y sin θ ¼ Ct with a trough reaching down theoretically
to minus infinity or practically to bottom. Fourth, the amplitude of wave, if an amplitude can be attributed to this form, may not be selected arbitrarily
and is fixed according to the water depth. Therefore, only a uniquely determined wave exists for a given depth.

Fig. 6 shows the wave form according to ηðx; tÞ ¼ �4h=3½ðx � CtÞ=h�2. The singularities at x ¼ Ct values are truncated at 0:95h. It is unlikely that this
analytical form has any physical meaning or producibility though it does satisfy the indicated wave equation exactly. At best it could be interpreted as a
mathematical peculiarity of KdV or combined Boussinesq type equations of any kind.
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