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Abstract 

A fundamental algebraic relationship for a general polynomial of degree n is 
given and proven by mathematical induction. The stated relationship is based 
on the well-known property of polynomials that the nth-differences of the 
subsequent values of an nth-order polynomial are constant. 
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1. Introduction 

The “Fundamental Theorem of Algebra” states that a polynomial of degree n has 
n roots. Its first assertion in a different form is attributed to Peter Rothe in 1606 
and later Albert Girard in 1629. Euler gave a clear statement of the theorem in a 
letter to Gauss in 1742 and at different times Gauss gave four different proofs 
(see [1], p. 292-306). 

A nearly as important property of a polynomial is the constancy of the 
nth-differences of its subsequent values. To clarify this point let us begin with 
some demonstrations. While it is customary to use polynomials with real coeffi-
cients, here a second-order polynomial with complex coefficients is considered 
first,  

( ) ( ) 2
2 1 3 2P x i x ix= + − +                      (1) 

where 1i = −  is the imaginary unit. Taking a real starting point 0 2x = −  and 
a real step value 1s =  the following Table 1 of differences can be established for 
the subsequent values of the polynomial. 

The first differences are computed by taking the differences of the subsequent 
values of the polynomial as in ( ) ( ) ( ) ( )2 22 1 6 10 3 4 3 6P P i i i− − − = + − + = + . 
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Table 1. Second-order differences for a sample second-order polynomial. 

 
 
The second differences are obtained similarly using the first difference values: 
( ) ( )3 6 1 4 2 2i i i+ − + = + . 

Expressing the first differences in terms of polynomial values  
( ) ( )2 22 1 3 6P P i− − − = +  and ( ) ( )2 21 0 1 4P P i− − = + , the first value of the 

second differences may be written as  

( ) ( ) ( ) ( )
( ) ( ) ( )

2 2 2 2

2 2 2

2 1 1 0

2 2 1 0 2 2

P P P P

P P P i

− − − − − −      
= − − − + = +

               (2) 

which is a particular form, 2n = , of the general theorem presented in Section 2. 
The constant value 2 2i+  of the second-differences can be calculated from the 
general expression ( ) 01 !n nn a s−  where n is the degree of the polynomial and 

0a  the coefficient of the nth-order term. For this particular example 2n =  and 

0 1a i= +  hence the constant becomes ( ) ( )2 21 2! 1 1 2 2i i− + = +  as found above. 
Another example is now given for a third-order polynomial with real coeffi-

cients  

( ) 3 2
3 2 3 5P x x x x= − − +                        (3) 

In this example a complex starting point 0 1x i= −  and a complex step value 
3 2s i= − +  are used so that Table 2 of differences is constructed, where the 

constant value of the third-differences can be calculated from the general for-
mula ( ) 01 !n nn a s−  as ( ) ( )3 31 3!2 3 2 108 552i i− − + = − − . 

A direct connection with the finite-difference approximation of derivatives of 
a polynomial is of course possible. Finite-difference approximation of the 
third-derivative of a third-order polynomial is given by  

( ) ( ) ( ) ( ) ( )3 0 3 0 3 0 3 0
3 3

3 3 2 3
 

P x s P x s P x s P x
P x

s
+ − + + + −

′′′ =         (4) 

where s is the incremental step. If the third-order polynomial is defined as 
( ) 3 2

3 0 1 2 3P x a x a x a x a= + + +  its third-derivative is ( )3 0 6P x a′′′ = . Now using 
this in (4) results in  

( ) ( ) ( ) ( ) 3
3 0 3 0 3 0 3 0 03 3 2 3 6P x P x s P x s P x s a s− + + + − + = −         (5) 

which exactly corresponds to the tabulated constant of third-differences. A re-
markable point is that while finite-difference approximations are typically for-
mulated for real and relatively small incremental step sizes, for the general ex-
pression no such restrictions apply: the incremental step s may be complex and 
arbitrarily large while the result is always exact. 
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Table 2. Third-order differences for a sample third-order polynomial. 

 
 

Finally, a possible application of (5) or its general form for an nth-order poly-
nomial, is its use as a recurrence formula for evaluating a given polynomial at 
equal intervals once the polynomial is evaluated at n distinct points. For instance 
for a third-order polynomial it is sufficient to know ( )3 0P x , ( )3 0P x s+ , and 

( )3 0 2P x s+  to obtain ( )3 0 3P x s+  from (5). Then, by setting 0x  to 0x s+  in 
(5), ( )3 0 4P x s+  can be obtained from the same recurrence relationship and 
continuing in this manner gives ( )3 0 5P x s+ , ( )3 0 6P x s+ , etc. with considera-
bly less arithmetic operations compared to straightforward evaluation of poly-
nomial.  

2. Main Theorem and Proof 

The main theorem which expresses the constancy of nth-order differences for an 
nth-order polynomial is stated first and then proven by the method of induction. 

Theorem 1  
For an nth-order polynomial ( ) 1

0 1 1
n n

n n nP x a x a x a x a−
−= + + +  with 0 0a ≠  

the following relationship holds  

( ) ( ) ( ) 0
0

1 1 !
n m n n

n
m

n
P x ms n a s

m=

 
− + = − 

 
∑              (6) 

where 1n ≥  and ja 's, x , s∈  or  .  
Proof of Theorem 1. The base case: Setting 1n =  in (6) results in  

( ) ( ) 1 1
1 1 0

1 1
( 1) 1!

0 1
P x P x s a s   

− + = −   
   

               (7) 

Substituting ( )1 0 1P x a x a= +  and ( ) ( )1 0 1P x s a x s a+ = + +  gives  

( ) ( )0 1 0 1 0a x a a x s a a s+ − + + = −                   (8) 

which is correct. 
The inductive step: Assuming that the statement (6) holds true for any integer 

n it is now proven that it also holds true for ( )1n + :  

( ) ( ) ( ) ( )
1 1 1

1 0
0

1
1 1 1 !

n m n n
n

m

n
P x ms n a s

m

+
+ +

+
=

+ 
− + = − + 

 
∑           (9) 

( )1nP x+  can be expressed in terms of ( )nP x  as  

( ) ( )1 1n n nP x xP x a+ += +                        (10) 
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Letting x x ms= +  in (10) and using it in (9) result in  

( ) ( ) ( )

( ) ( )

1

1
0

1 1
0

1
1

1 1 !

n m
n n

m

n n

n
x ms P x ms a

m

n a s

+

+
=

+ +

+ 
− + + +    

 

= − +

∑
          (11) 

Since ( )1
0

1
1 0mn

m

n
m

+

=

+ 
− = 

 
∑  for any n (odd or even) the summation propor-

tional to the constant 1na +  vanishes, reducing (11) to  

( ) ( ) ( ) ( )

( ) ( )

1 1

0 0

1 1
0

1 1
1 1

1 1 !

n nm m
n n

m m

n n

n n
x P x ms s m P x ms

m m

n a s

+ +

= =

+ +

+ +   
− + + − +   

   

= − +

∑ ∑
    (12) 

Making use of 1 1
0 0 1

1
1

n n n
m m m

n n n
m m m

+ +

= = =

+     
= +     −     

∑ ∑ ∑  ([2], p. 882) in the 

first summation above results in  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1

0 1

1 1 1
0

0

1 1
1

1
1 1 1 !

n nm m
n n

m m

n m n n
n

m

n n
x P x ms P x ms

m m

n
s m P x ms n a s

m

+

= =

+
+ +

=

    
− + + − +    −    

+ 
+ − + = − + 

 

∑ ∑

∑
       (13) 

By re-defining the running index in the second summation (13) becomes 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1

0 0

1 1 1
0

0

1 1 1

1
1 1 1 !

n nm m
n n

m m

n m n n
n

m

n n
x P x ms P x m s

m m

n
s m P x ms n a s

m

+

= =

+
+ +

=

    
− + + − + +       

    
+ 

+ − + = − + 
 

∑ ∑

∑
   (14) 

Since x may be assigned to any value, substituting x + s in place of x in the 

base case (6) reveals that ( ) ( )0 1 1mn
nm

n
P x m s

m=

 
− + +    

 
∑  is too equal to the 

same quantity: ( ) 01 !n nn a s− . Noting in the second summation in (14) that 

( ) ( )11 1m m+− = − −  renders the terms in square brackets zero. Thus, to complete 
the proof the remaining equality in the second line of (14) must be proven: 

( ) ( ) ( ) ( )
1 1 1

0
0

1
1 1 1 !

n m n n
n

m

n
s m P x ms n a s

m

+
+ +

=

+ 
− + = − + 

 
∑        (15) 

For m = 0 the first term of the summation in (15) is zero hence bringing no 
contribution. Therefore, we can start the summation from m = 1 without any 
error. Then, the summation may be expressed as 

( )

( ) ( )
( )

( ) ( )
( ) ( )

1

1

1

1

1

1

1
1

1 !
1

1 ! !

1 !
1

1 ! 1 !

n m

m

n m

m

n m

m

n
m

m
n

m
n m m

n
n m m

+

=

+

=

+

=

+ 
−  

 
+

= −
+ −

+
= −

+ − −

∑

∑

∑
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( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

1

1

1

0

1

0

!1 1
1 ! 1 !

!1 1
! !

1 1

n m

m

n p

p

n p

p

nn
n m m

nn
n p p

n
n

p

+

=

+

=

+

=

= − +
+ − −

= − +
−

 
= + −  

 

∑

∑

∑

 

where an obvious change of running index m = p + 1 has been implemented in 
the final stage. Employing the last expression obtained above after changing p to 
m for the summation of (15) results in 

( ) ( ) ( ) ( ) ( )1 1 1
0

0
1 1 1 1 1 !

n m n n
n

m

n
s n P x m s n a s

m
+ + +

=

 
+ − + + = − +    

 
∑    (16) 

As indicated above, the main theorem may also be stated as  

( ) ( ) ( ) 00 1 1 1 !m nn n
nm

n
P x m s n a s

m=

 
− + + = −    

 
∑ . Using this in (16) yields 

( )( )( ) ( ) ( )1 1
0 01 1 1 ! 1 1 !n nn ns n n a s n a s+ ++ − − = − +            (17) 

which proves that the proposition holds true for (n + 1) as well.            ☐ 
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