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Abstract

A fundamental algebraic relationship for a general polynomial of degree n is
given and proven by mathematical induction. The stated relationship is based
on the well-known property of polynomials that the n"-differences of the
subsequent values of an n™-order polynomial are constant.
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http://creativecommons.org/licenses/by/4.0/ 1. Introduction

The “Fundamental Theorem of Algebra” states that a polynomial of degree n has
nroots. Its first assertion in a different form is attributed to Peter Rothe in 1606
and later Albert Girard in 1629. Euler gave a clear statement of the theorem in a
letter to Gauss in 1742 and at different times Gauss gave four different proofs
(see [1], p. 292-306).

A nearly as important property of a polynomial is the constancy of the
n"-differences of its subsequent values. To clarify this point let us begin with
some demonstrations. While it is customary to use polynomials with real coeffi-
cients, here a second-order polynomial with complex coefficients is considered
first,

Pz(x)=(1+i)x2—3ix+2 (1)

where i=+-1 is the imaginary unit. Taking a real starting point x, =-2 and
areal step value s=1 the following Table 1 of differences can be established for
the subsequent values of the polynomial.

The first differences are computed by taking the differences of the subsequent

values of the polynomial as in P (-2)—P,(—1)=(6+10i)—(3+4i)=3+6i.
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Table 1. Second-order differences for a sample second-order polynomial.

m 0 1 2 3 4

To +ms -2 -1 0 1 2

Py(zg + ms) 6+1|0i 3—!—42' 2—I|—Oi 3—?2’ 6-2I2'

First differences | 3460 | 1+4i | 1420 | -3+0i |
Second differences ‘ 2421 ‘ 2424 ‘ 2424 ‘

The second differences are obtained similarly using the first difference values:
(3+6i)—(1+4i)=2+2i.

Expressing the first differences in terms of polynomial values
P,(-2)-P(-1)=3+6i and P (-1)-P(0)=1+4i, the first value of the
second differences may be written as

[2(2)-R()]-[A()-R )]

(2)
= B(2)-2B(-1)+ B (0)=2+2i

which is a particular form, n =2, of the general theorem presented in Section 2.
The constant value 2+2i of the second-differences can be calculated from the
general expression (—1)"nla,s” where n is the degree of the polynomial and
a, the coefficient of the n™-order term. For this particular example n=2 and
ay =1+i hence the constant becomes (—1)’2!(1+i)1> =2+2i as found above.

Another example is now given for a third-order polynomial with real coeffi-

cients
P (x)=2x"-x>-3x+5 (3)

In this example a complex starting point x, =1—i and a complex step value
s=-3+2i are used so that Table 2 of differences is constructed, where the
constant value of the third-differences can be calculated from the general for-
mula (1) nlays” as (—1)'312(=3+2i)’ =—108—-552i.

A direct connection with the finite-difference approximation of derivatives of
a polynomial is of course possible. Finite-difference approximation of the

third-derivative of a third-order polynomial is given by

P}W(x): Ps(xo +3S)_3P3 (xo +2§)+3P3 (xo +S)_Ps(x0) (4)

N

where s is the incremental step. If the third-order polynomial is defined as
P(x)=a,x’ +ax’ +a,x+a, its third-derivative is P"(x)=6a,. Now using
this in (4) results in

P (x,)=3P,(x,+5)+3P(x,+25) = B (x, +3s5) =—6a,s’ (5)

which exactly corresponds to the tabulated constant of third-differences. A re-
markable point is that while finite-difference approximations are typically for-
mulated for real and relatively small incremental step sizes, for the general ex-
pression no such restrictions apply: the incremental step s may be complex and

arbitrarily large while the result is always exact.
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Table 2. Third-order differences for a sample third-order polynomial.

m 0 1 2 3 4 5

T+ ms 16 | -24i | -5+3i | -8+5i | -1147i | -14+9i
Py(z+ms)| -2+i | 4+23i|24+417i|166+17357 | 538445291 | 1248+9351
First differences | -6-22i |-20-304i|-142-1318/ | -372-2794i | -710-4822,
Second differences ’ -14-3724 ’ -122-9244 ’ -230-14761 ’ -338-20287 ‘

Third differences ‘ -108-5527 ‘ -108-5527 ‘ -108-5527 ‘

Finally, a possible application of (5) or its general form for an n™-order poly-
nomial, is its use as a recurrence formula for evaluating a given polynomial at
equal intervals once the polynomial is evaluated at 2 distinct points. For instance
for a third-order polynomial it is sufficient to know P3(x0), P, (xo +s) , and
B(x,+ 2S) to obtain B, (xo +3s) from (5). Then, by setting x, to x,+s in
(5), 133(360 +4s) can be obtained from the same recurrence relationship and
continuing in this manner gives P, (xo +5S) , B (xo +6s) , etc. with considera-
bly less arithmetic operations compared to straightforward evaluation of poly-

nomial.

2. Main Theorem and Proof

The main theorem which expresses the constancy of n"-order differences for an
n"-order polynomial is stated first and then proven by the method of induction.
Theorem 1
For an n"-order polynomial P,(x)=ayx" +ax""---+a, x+a, with a,#0
the following relationship holds

S (2] om) =1y s ©

m=0 m

where n>1 and aj's, x, seR or C.

Proof of Theorem 1. The base case: Setting n=1 in (6) results in
1 1
(ij‘(x)_(ljp‘(x”)=(—1)1“aosl )
Substituting B (x)=a,x+a, and B (x+s)=a,(x+s)+a, gives
(a0x+a1)—[a0(x+s)+al]=—aos (8)
which is correct.
The inductive step: Assuming that the statement (6) holds true for any integer
n it is now proven that it also holds true for (n + 1) :

nzﬂ (_l)m [7’1 + lenH (x+ ms) _ (_1)n+1 (}’l n 1)!aosn+1 (9)
m

m=0

n

P ()T) can be expressed in terms of P, ()?) as

P

1 (X)=%P,(X)+a (10)

n+l
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Letting X =x+ms in (10) and using it in (9) result in

n+l

S (" s m) e ms)

(11)
= (—l)n+l (n+1)la,s""

Since Z::o (—l)m [

tional to the constant «,,, vanishes, reducing (11) to

S (M eems) s S (" o

n+1
J= 0 for any n (odd or even) the summation propor-
m

m=0 m=0

(12)
= (—l)’m (n+1)lays"™

n+ n+1 n n n+ n
Making use of Zm_lo[ jzzm_o( j+zm_ll[ j ([2], p. 882) in the
m

m—1

first summation above results in

S (2 eem S (1 Jam)

13
w m n +1 n+l +1 ( )
+sy (-1)"m P (x+ms)=(-1)" (n+1)la,s"
m=0 m
By re-defining the running index in the second summation (13) becomes
x{i(—l)m(nj}’,,(x+ms)+ > (-1 [”jpﬂ [x+(m+1)s]}
m=0 m m=0 m
(14)

n+l

Bl e =) o4 s

Since x may be assigned to any value, substituting x + s in place of x in the

base case (6) reveals that Z;_O(—l)m{anH [x+(m+1)s] is too equal to the
m

same quantity: (—1)"nla,s”. Noting in the second summation in (14) that

(—l)m+1 =—(-1)" renders the terms in square brackets zero. Thus, to complete
the proof the remaining equality in the second line of (14) must be proven:

Snzﬂ(_l)m m(” +1JPn (x+ ms) = (—1)’”1 (I’l +1)!a0sn+l (15)
m=0

m

For m = 0 the first term of the summation in (15) is zero hence bringing no
contribution. Therefore, we can start the summation from m = 1 without any
error. Then, the summation may be expressed as

wl m [(n+l
2(=1)"m
m=1 m

il n+1)!

Sy D)

m=1 (}’l+1—m)'m'
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n+l

=E ) (), L

el n+1—m)!(m—1)!
= pzrl:‘)(—l)p+1 (n +1)—(n —’]l?!)!p!
_ (n+1)§ (-1)"" (Z]

where an obvious change of running index m = p + 1 has been implemented in
the final stage. Employing the last expression obtained above after changing p to

m for the summation of (15) results in

s(n+1) Zn: (—l)m+1 (:Jﬂ [x +(m+ l)s} = (—1)"+I (n+ 1)!aos"+l (16)

m=0

As indicated above, the main theorem may also be stated as
n m| N n n . .. .
Zm:O(_l) (m)P" [x +(m+ l)s} =(—1)"nla,s". Using this in (16) yields

s(n + 1)(—1)(—1)" nlays" = (—1)”+1 (n + l)!aos"” 17)

which proves that the proposition holds true for (2 + 1) as well. O
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