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ABSTRACT

Boussinesqg-type equations with improved linear dispersion characteristics are derived for
spatially and temporally varying bottom. Starting from the first principles, spatial variations
and temporal movements of seabed due to underwater earthquakes, landslides and alike are
incorporated into the Boussinesg-type equations. The momentum equation is then manipu-
lated by the partial replacement technique so that a generalized Boussinesq set of equations
with improved dispersion characteristics is obtained. For an impulsive bed motion-simulated
wave profiles are compared with experimental measurements. Waves generated by an
ellipsoidal slump moving down on an inclined plane are also numerically simulated to
disclose the effect of a newly derived term. Overall, the new set of equations is expected
to provide more accurate representation of wave motions due to bottom movements by
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correctly modeling accelerative bed effects and propagation of relatively shorter waves.

1. Introduction

Mei and Le Méhauté (1966) and shortly afterwards
Peregrine (1967) derived Boussinesg-like equations
(Boussinesq, 1872) for water of spatially varying depth.
Peregrine’s model, being formulated in terms of verti-
cally averaged or mean velocity, has since then become
virtually standard Boussinesq model of the coastal engi-
neering community. Witting (1984) gave a highly non-
linear set of Boussinesqg-like equations based on a new
velocity concept that also extended the applicable
range of equations to greater relative water depths.
Following a different approach, Madsen, Murray, and
Serensen (1991) derived new Boussinesg-type equa-
tions with better dispersion characteristics. Madsen
and Sgrensen (1992) carried the derivation a step further
to varying bathymetry. Nwogu (1993) used the velocity
at an arbitrary depth for deriving alternative Boussinesq-
type equations. This concept was indeed quite in line
with that of Witting (1984) but physically more mean-
ingful. Beji and Nadaoka (1996) followed an approach
similar to Madsen and Sgrensen (1992) to produce a
Boussinesg-type wave model with consistent shoaling
properties for spatially varying depth. Much more ela-
borated works have followed to further improve disper-
sion and nonlinear characteristics of Boussinesg-type
equations; Madsen and Schéffer (1998) gave a very
detailed account with their own contributions.

Recent decades have seen considerable increase in
capabilities of computational facilities, which in turn
provided augmented capacities for numerical

simulation of global scale wave events such as tsuna-
mis and underwater landslides. Among relatively ear-
lier works Shuto (1991) presented a comprehensive
review with emphasis on numerical aspects of model-
ing while Nagano, Imamura, and Shuto (1991) gave an
oceanic propagation model and its application for a
particular case. Quite detailed programming aspects
of a numerical tsunami model can be found in Goto,
Ogawa, and Imamura (1997). Watts (2000) studied the
tsunami generation aspects of a sliding solid block. In
the same vein, impulsive waves generated by land-
slides were experimentally investigated by Fritz,
Hager, and Minor (2004). A global scale numerical
modeling of the catastrophic Indonesian tsunami of
2004 was reported in Kowalik and Logan (2005).
Dispersive aspects of waves for the Indonesian tsu-
nami was considered by Horrillo, Kowalik, and
Shigihara (2006). Yamazaki, Cheung, and Kowalik
(2010) developed a non-hydrostatic global tsunami
model and gave its numerical treatment with
applications. A work on accurate specification of tsu-
nami source characteristics was reported by An,
Sepulveda, and Liu (2014). Literature concerning the
simulation of surface waves generated by underwater
earthquakes or landslides is extensive; the reader is
directed to Titov, Kanoglu, and Synolakis (2016),
where a very recent state-of-the-art review with an
extensive list of references can be found.

In this work a Boussinesg-type wave model for a
bathymetry comprising not only spatial but also tem-
poral variations is developed based on the first
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principles. The resulting equations, which may be
viewed as generalized forms of Peregrine’s equations
for time-dependent depths, as given in Wu (1979) and
Wu (1981), are further manipulated by the partial
replacement technique of Beji and Nadaoka (1996)
to obtain another set of equations with improved
dispersion characteristics as well as time-dependent
bathymetry. The model equations are capable of
simulating relatively short dispersive waves generated
by temporal bottom movements due to underwater
earthquakes or landslides. The performance of equa-
tions is tested against time history records of
Hammack (1973) for an impulsive bed movement. A
hypothetical 2D (physically 3D) simulation of waves
generated by an elliptic slump is considered to reveal
the effect of a newly derived term comprising bottom
acceleration in the momentum equation.

2. Mathematical derivation

The derivation is carried out by integrating the con-
tinuity and momentum equations vertically from the
seabed to the free surface. The final equations are
expressed in terms of vertically averaged or mean
horizontal velocity vector as this choice, besides
being rather conventional, renders the continuity
equation exact. Use of an exact mass conservation
equation is quite advantageous for obtaining accurate
numerical solutions.

2.1. Continuity equation

The conservation of mass or the continuity equation
for an incompressible homogeneous fluid can be writ-
ten as

ow

where u, w are respectively the horizontal velocity vec-
tor and vertical velocity component. A bold face symbol
indicates a vector with x — and y — components only,
that is, u = (u, v); the two-dimensional gradient opera-
tor, (0/0x,0/dy), is denoted by V.

Before carrying out the vertical integration in the
z — direction, it is recalled that if a surface deforming
in time, S(x,y,z,t), is a material surface it satisfies
DS/Dt =0 where D/Dt= 9/t + ud/dx + vd/dy +
w0/0z is the material derivative operator. Then, for a
domain bounded above by the free surface
Se(x,y,z,t) =z —((x,y,t) and bounded below by a
bed Sy(x,y,z,t) = z+ h(x,y,t), the kinematic surface
conditions are respectively expressed as

DS D B _
E:E[Z_C(Xa)ht)}_W_Ct_u.vc_o

on z={(x,y,t)

()

COASTAL ENGINEERING JOURNAL e 319

DS, D
Br =2yl =wth +u-Vh=0
on z=—h(x,y,t)

3)

From the above formulations it is understood that the
origin of the z — axis is taken at the still water level
z =0 and the seabed lies below it while h(x,y,t) is
always a positive quantity denoting the local water
depth at any given horizontal location and instant.
Integrating now Equation (1) from the seabed z =
—h(x,y,t) to the free surface z = {(x,y, t) results in

}(V~u)dz+ }aﬂ

dz=0 4
“h —hazz @

Recalling Leibnitz’s rule for differentiation of integrals
in connection with the first term in Equation (4) gives

4 4
e <J udz> = [ (V-u)dz4u;-V{+u_,-Vh (5
—h —h

where a subscript denotes the variable at which u is
evaluated for z. The integration of the second term in
Equation (4) gives w; —w_jp, then with the use of
Equation (5), Equation (4) becomes

4
V-(J udz>+Wg—u(-V(—wh—uh-Vh—0 (6)
h

Using w; = (; + u¢ - V{ from Equation (2) and w_j, =
—hy —u_j - Vh from Equation (3) results in

4
Cr+hr+v'<JudZ>=0 7)

—h

The mean or the vertically averaged horizontal velo-
city vector is defined as

_ 1
U—m__[hudz (8)

In terms of the mean velocity vector the vertically
integrated continuity equation for spatially and tem-
porally varying depth becomes

Gt+h+V-[(h+Qu]=0 )

which is exact as no approximation has been intro-
duced in the derivation process. While inaccuracies
associated with neglected terms in the momentum
equation may be justified by and linked to some
frictional effects, higher-order terms, etc. the exact-
ness of mass conservation is essential as there can
be no justification of losing or gaining mass in a
system. Therefore, the mean velocity, which produces
an exact continuity equation in the form of Equation
(9), is preferred here.
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2.2. Momentum equation

Beji (1998) derived an alternative form of momentum
equation for irrotational nonlinear free surface flows,
which is exact:

¢ 1
u+V gC+JWtdz+§(u(-ug+w§) =0 (10

where u; and w; are respectively the time derivatives
of the horizontal velocity vector and vertical velocity
component at an arbitrary depth z while u; and w;
denote the respective variables evaluated at the free
surface (. Starting from Equation (10) any kind of
depth-integrated wave model may be easily derived
once the vertical dependency or the z — profile of the
velocity field is specified. Derivations of classical and
highly nonlinear Boussinesq models by the use of
Equation (10) were demonstrated in Beji (1998).

Equation (10) is first integrated throughout the
entire water column fromz=—-htoz=_

4 4 4 [4
J udz+g J Vidz + J \Y (J wtdz> dz
_ — - z

—_

4

- u; - u; + wy)dz
Z—J.h (ug - ug + wg)dz
=0 (11)
Considering again Leibnitz's rule for the first term it is
possible to write

9 4 4
& < J' u dZ) == Jh utdZ + u((t + ufhht (12)

From the definition in Equation (8) the integral in
parentheses is (h + {)u. Making use of this definition
and then employing Equation (12) in Equation (11)
gives

&[(h+ Qu] — uele —u_phe + g(h + V¢
¢ [4
+ th<f Wtdz>dz +3(h+QV(ug - ug + W?) =0
(13)

Performing the time differentiation of the first term
and dividing the entire equation by (h + () results in

1
Ut+gVC+(h+C | V<Jwtdz>dz

1
+-V(u;-us + W?)

oN

(14)

where the terms (U —u¢)(; and (U — u_p)hy, being
multiplications of derivatives, have been neglected
according to the usual Boussinesq approximations
(see Abbott, 1979, p.53). Note that both (4 — u;) and
(4 — u_p) are small second-order quantities since they
represent the differences between the mean velocity
and the surface velocity, and the mean velocity and the

bottom velocity, respectively. The relative smallness of
these differences is obvious when it is recalled that the
higher-order terms; namely, dispersive and nonlinear
terms may be manipulated by using the mean, the
surface or any other velocity variable interchangeably.

At present, Equation (14) cannot be pursued
further unless the vertical dependency of the velocity
field is specified so that the depth integration of
the third term can be accomplished. In line with the
Boussinesq theory, the velocity variables are
expanded in power series in z:

Zzunx%
ZzwnX%

where the terms ug and wy for n = 0 represent the
horizontal velocity vector and the vertical velocity
component at the still water level z = 0. Expressions
given in Equation (15) must satisfy the kinematic
conditions; namely, the continuity equation and the
irrotationality condition. Substituting the series
expansions of Equation (15) into the continuity equa-
tion, Equation (1), and arranging results in

u(x,y,z,t) =

w(x,y,z,t) =

(V-ug+wi) + (V- ur +2w,)z
+(V-uy +3w3)2? + - -
=0 (16)

To satisfy Equation (16) the terms inside the parenth-
eses must vanish separately,

W Uo, 2 (1 7)

Expressions in Equation (15) are now used in the
irrotationality condition du/0z =Vw and the rela-
tions obtained in Equation (17) are employed so that

(uy — Vwy) + 2uy + V(V - ug) ]z
1
+ [3us3 +EV(V w24
=0 (18)
Equation (18) in turn implies the following equalities
1
U = __V(V ' uO))

2 (19)
u3:——V(V-u1):—gV(V2wo), -

Thus, the series expansions that satisfy both the con-
tinuity equation and the irrotationality condition can
be written as

1 1
u=uy+zVwy — EZZV(V “up) — gz3V(V2W0) — . (20)
W:WofZVvuo7%ZZV2WO+223V2(V~UO)7~~~ (21

The bottom condition as given by Equation (3) must
now be incorporated into Equation (20) and



Equation (21). Setting z = —h in both equations gives
u_p and w_j, respectively. Then, these expressions are
used in Equation (3) to obtain

wo = —hy — V- (hug) + hVh - (Vwy) +%h2Vh
1
[V(V - )] +§h2V2wo NI (22)

The above expression for wy is used on the right
successively so that Equation (22) becomes

wo = —h; — V - (huo) — hVh
{Vhe + V[V(huo)]} + %th
([V(V - ug)] — %h2vzht 4 (23)

According to the Boussinesq approximations the
terms with derivatives higher than the first in the
vertical velocity w are all neglected; therefore, only
the first two terms of Equation (23) are kept. In the
same vein, the terms containing the second and
higher spatial derivatives of the depth are neglected.
Discharge of higher depth gradients implies the mild-
slope approximation, which is maintained throughout
the work wherever necessary.

Thus, the horizontal velocity vector from Equation
(20) and the vertical velocity from Equation (21) with
the aid of the truncated form of Equation (23) are now
expressed as follows:

U = o — 2{Vh; + V[V - (huo)]} — %22V(V ‘o) (24)
w=—h; — V- (hug) —z(V - up) (25)

Note that the velocity of the bottom movement h; is
directly transmitted to w. Equations (24,25) may be used
for constructing a Boussinesq model in terms of the still
water level velocity; however, in this work the mean
velocity is selected as the velocity variable. It is necessary
to express u and w as functions of u instead of ug. The
procedure is straightforward and can be found in Mei
(1989, p. 508). Briefly, Equation (24) is integrated verti-
cally for the entire depth so that u is expressed as a
function of ug. Then, by successive approximations the
equation is inverted to express ug as a function of u.
Finally, this expression is used in both Equations (24,25)
so that u and w are now expressed in terms of u:

U= - (h+22){Vh + V[V - (ha)]}

2
1 (h* —32%)V(V -u) (26)
—h; — V- (ht) — z(V - ) 27)

Il ol

The vertical velocity w as expressed in terms of u in
Equation (27) may now be used in Equation (14) to
obtain a momentum equation that incorporates the
vertical motion of seabed.
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1 1
U +gVe+oV(u-u+ h?) +6h2V(V S U)
1 1
=5hVIV - (hu) ] + S hVhy (28)

in which u; - u; has been replaced by u - u in accord
with usual Boussinesq approximations. Likewise, wg
which is made up of multiplications of derivatives of
variables, is neglected in Boussinesqg-type equations;
here h?, the new part of w{ is kept temporarily just to
show all the new contributions due to bottom move-
ment. Actually, both 1V(h?) from the left and
ThV[V - (haa)] from the right produce terms contain-
ing multiplications of derivatives hence are negligible.
The only linear term associated with bottom move-
ment is %th" and it is this term alone that makes an
appreciable difference as demonstrated later for a
hypothetical case. Normally, the effect of this term
should be tested against experimental data to confirm
its corrective aspects. However, relatively long time
records of waves generated by relatively slow bottom
motions are scarcely available. Therefore, devising a
hypothetical numerical experiment appropriate for
the purpose seems presently the only way to examine
the effect of this term. Moreover, since the earlier
work of Wu (1979) confirms the theoretical correct-
ness of %th" it would be fair to expect that the
inclusion of this term would indeed result in more
accurate modeling of waves.

Equations (9,28) in the absence of 1V(h?) term are
in complete agreement with the so-called “general-
ized Boussinesq” or gB model recapitulated in Wu
(2001). The procedure introduced in the present
work is relatively short due to use of Equation (10)
as the starting point, and it has the advantage of
offering the possibility of developing a highly
nonlinear' Boussinesq model with considerable econ-
omy in the terms involved. Specifically, as a part of an
iterative numerical scheme, the terms u¢, u_, and w;
may be separately computed from Equations (26,27),
and then used in Equation (13). This way all the
omitted nonlinear terms can be kept. On the other
hand, it must be pointed out that weakly nonlinear
theories are satisfactory enough to model nonlineari-
ties in practical applications as indicated by Stiassnie
(2017) based on the work of Bonnefoy et al. (2016).
Therefore, the lowest order nonlinearity as retained
here according to the classical approach is deemed
quite appropriate for all practical purposes.

3. Improved Boussinesq model

The Boussinesqg-type momentum equation derived for
spatially and temporally varying bottom is now

'Some Boussinesq models are incorrectly termed as “fully” nonlinear while in essence no wave model based on truncated

series expansions can be fully nonlinear.
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manipulated to produce a wave model with better
dispersion characteristics. The technique, which is
called partial replacement, is simple and straightfor-
ward: a zero addition to dispersion terms and then
replacement of parts of the terms by using a zeroth-
order relationship (Beji and Nadaoka, 1996). After dis-
charging the negligible contributions IV(h?) and
FhV[V - (hu)] of bottom movement, by a simple
addition and substraction process Equation (28) can
be rewritten as

U+ gVi+ivV(u-u) + (1 +BRV(V - ) — Bh*V(V - ay)

=1(1+B)hVIV - (hue)] — 1BhV[V - (hue)] + 1hVhe

(29)
where B is a non-dimensional parameter which is
determined in relation to the dispersion relationship
of the wave model. As it is permissible to modify the
nonlinear and dispersion terms by using the zeroth-
order relations the dispersion terms proportional to 8
are now replaced by their zeroth-order equivalent
using u; = —gV{ so that Equation (29) becomes

U+ gV{+1iV(u-a) +1(14+B)MV(V - uy) +1Bgh*V(V3()

=1(14+B)hV[V - (hu,)] +1BghV[V - (hV()] + 1hVhy

(30)
which is a momentum equation with mixed dispersion
terms for spatially and temporally varying bathymetry.
If the last term is removed, Equation (30) becomes
identical with the momentum equation of Beji and
Nadaoka (1996). The last term, originating from spatial
variations of bed accelerations, acts similar to a dis-
persion term and smooths out surface fluctuations
induced by bottom movement.

For only spatially varying depth 8 =0 recovers
Peregrine (1967) equations while for constant depth
B = —1 implies original Boussinesq (1872) derivation.
For B = 1/5 the linear dispersion relation of the com-
plete set of equations, Equation (9,30), corresponds to
the fourth-order Padé approximation of linear theory
dispersion relation. The extended applicable range of
relative depths for the improved set of equations was
explored in detail in Beji and Nadaoka (1996). An in-
depth analysis of linear shoaling characteristics of
various Boussinesq models, including the present
one, can be found in Simarro, Orfila, and Galan (2013).

4. Numerical simulations

Hammack (1973) investigated the transitional bed
motions in relation to the surface wave signature
and observed that especially for creeping or relatively
slow bed motions the time-displacement history of
the bed movement influences the surface wave
forms appreciably. For determining the relative rapid-
ity of ground motions Hammack (1973) suggested a
time-size ratio tC@/b, which was later named as the

Hammack number (Watts, 2000), where t. is the char-
acteristic time indicating the duration of bed motion,
h is the water depth, b is the width of the uplift or
downthrow region, and g is the gravitational accelera-
tion. Impulsive bed motions are categorized as
motions with Ha = tc\/g%/b < 1, transitional bed
motions with Ha = tc\/g_h/b ~ 1, and creeping bed
motions with Ha = t.\/gh/b>> 1. The Hammack
number may be adapted to underwater landslides
by setting t. to the total duration of landslide as is
done in §4.2.

Todorovska and Trifunac (2001) drew attention to a
different bed movement duration: the relatively
longer duration of long source times resulting from
multiplicity of the earthquake source. In such cases
faulting does not happen as a single event but in
sections: ruptures occur as successive events with
delays in between thus producing slow earthquakes
or landslides. As the source moves progressively it
causes piling up of the surface deformation thus
amplifies the waves generated. Considering the
study by Abe (1979) of 65 large tsunamigenic sea-
quakes which occurred between 1837 and 1974,
Todorovska and Trifunac (2001) examined the reasons
for abnormally large tsunami run-up values; namely,
one to two orders of magnitude larger than the aver-
age trend values. Among some other factors it has
been suggested that such extreme occurrences are
caused by a long faulting process or a slow seaquake.
This particular point is quite important in the sense
that similar to underwater landslides or slumps slow
seaquakes may generate larger than expected waves
and runup values due to relatively slow bed motions.
Then, modeling the surface displacements in accord
with the time evolution of the seaquake or landslide
becomes crucial for reliable predictions (Hammack,
1973; Lavholt et al.,, 2015).

4.1. Impulsive upthrust of a bed

Hammack (1973) conducted a series of experiments in a
wave tank with a bottom wave generator (bed unit)
located at the upstream end of the tank. Among other
measurements the downstream wave forms were
recorded for an exponential rise of the bed unit. For
this particular experiment the relevant parameters were
given as {o/h = 0.1,b/h = 12.2,and t./gh/b = 0.148
with {, denoting the maximum vertical rise of the unit.
Rest of the variables have already been defined. The
time-size ratio Ha = 0.148, being considerably less
than unity, indicates an impulsive bed motion.

The numerical solution of the new Boussinesq
model, Equations (9,30) for 8 = 1/5, was carried out
by the scheme described in detail in Bayraktar and
Beji (2013) with the inclusion of newly introduced
terms: h; in the continuity equation and %thn in



the momentum equation. While the contribution of
improved dispersion could be observed quite clearly
when simulation was repeated for 8 = 0, the contri-
bution of $hVhy is negligible for impulsive bed
motions. Its effect is appreciable only for slow or
creeping-type bed motions and for these cases mea-
surements are very scarce. Therefore, to reveal the
contribution of %th,, a hypothetical case of rela-
tively slow bed motion is considered in § 4.2.

The simulation exactly imitated the actual physical
experiment and a bed unit of total width b = 0.61m
(the larger bed unit of the experiments) was placed at
the upstream end of the domain with no reflection (solid
wall) condition at x = 0. The portion of computational
domain bed corresponding to the physical bed unit was
moved up in exponentially varying fashion, mathemati-
cally described in line with Hammack (1973) as

h(x,t) = {4[1 — exp(—at)]H(x — b) (t>0) (31

where H(x) is the Heaviside step function and a =
1.11/t. so that the bed elevation rises to 2{y/3 in t,
second. h(x,t) continues to rise at the same rate in
time till it exponentially approaches the maximum
elevation (.

The spatial resolution in the x — direction was set
to Ax =0.007 m and the temporal resolution was
At =0.01s hence the Courant number Cr=
C(At/Ax) was unity for C = /gh with h=0.05 m.
From the numerical stability point of view there was
no requisite for Cr = 1 but was preferred for minimiz-
ing phase errors. Since the experiment was physically
two dimensional (numerically one dimensional) Ay
was arbitrarily selected as 1 m.

Figure 1 compares time histories of measured and
computed surface displacement for two different
locations: (a) at the edge of the bed unit x = b, and
(b) at 20 water depths downstream of the unit
x = b + 20h. Simulation agrees with measurements
quite well, establishing confidence for the model

50

(a)
6
< 4t
~N
2z
S
< 2F
Ofe o
2 1 1 1 1 1 1
-10 0 10 20 30 40
H(g/h)2 - x/h

100 ($/h)
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equations and numerical scheme for impulsive bed
motions.

4.2. Underwater slump sliding down over a slope

Time domain measurements of waves generated by
underwater movements are scarce, measurements
with slow bed motions are even scarcer. Since rela-
tively slow bed motions are more influential in sub-
sequent development of surface deformations a
hypothetical case is created so that the dispersive
effect of bottom acceleration could be observed.
Thus, an ellipsoidal underwater slump moving down
on an inclined plane is considered for a sample
simulation.

The length and width of the simulation domain are
1200m and 600 m, respectively. The water depth at
the beginning of the domain is 2m and increases to
10m on a 1:75 downslope in the first 600 m dis-
tance, while it remains constant at 10 m in the second
half of the domain. The slump is in the shape of a half
ellipsoid with z — axis pointing normal to the inclined
plane bed. The length of the primary x — axis of the
ellipsoid is 120 m and of the primary y — axis is 150 m.
The maximum height of the slump, or the z — axis
height of the ellipsoid is 0.5m. The slump enters the
domain at the initial velocity Vo =5m/s and then
keeps speeding under reduced gravitational accelera-
ton g =g(o. —pu)/p. =044  where p, =
1025kg/m® is the seawater density and p, =
1826 kg/m> is the density of wet excavated clay.
Theoretical velocity of a material sliding down over
an inclined plane of slope angle 8 under the action of
reduced gravity without friction may be taken as
V(t) = Vo + (g'sinO)t. Here, Vy is the initial velocity
of the landslide, g'sin6 is the reduced gravitational
acceleration acting parallel to the inclined plane, and t
is the time. Once the slump reaches the bottom it
continues moving at the speed it has attained at the

(b)

20
H(g/h)"” - x/h

Figure 1. Time history comparisons of Hammack's measurements (red circles) with numerical simulation (solid line) for an
impulsive bed upthrust. (a): At the edge of the bed unit (x — b)/h =0, (b): at 20 water depths downstream of the unit

(x — b)/h = 20.
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end of the downslope, which in the present case is
nearly 9.7m/s. This velocity is intentionally arranged
to be quite close to the non-dispersive wave celerity

at 10m water depth, C= \/g_h: 9.9m/s so that
the simulation would nearly be for the critical
Froude number fr =V/C =1. An estimate for the
relative rapidity of motion can be made by adapting
the Hammack number to the present case.
Considering the present simulation, the total travel
duration of the slump is taken approximately as t. =
100 s while the average shallow water wave velocity is
computed by using the mean water depth h,, = (2 +
10)/2=6m so that +/gh, =+/9.81-6=7.7m/s
and the width of the slump b = 150 m gives for the
time-size ratio or the Hammack number
Ha =100 -7.7/150 = 5, which is considerably greater
than unity, hence indicating a creeping-type motion.
In the numerical solution the spatial resolutions
were taken as Ax = Ay = 2m while temporal resolu-
tion was At = 0.2s. With these resolutions, using the
non-dispersive wave celerity at 10 m water depth as
representing the wave propagation velocity, the
Courant number in both directions Cr = C(At/Ax) =
C(At/Ay) was nearly unity. As for the impulsive bed
motion simulation it was not necessary to have Cr = 1
but was preferred for minimizing phase errors.
Although simplified, the approach used here is suf-
ficiently realistic to produce a hypothetical underwater
landslide. Similar approximations are introduced for
such hypothetical simulations (Wu, 1987; Dutykh
et al, 2013; Dutykh and Kalisch, 2013) and even for
actual case scenarios (Lgvholt, Pedersen, and Gisler,
2008). The approximations are acceptable in the
sense that all these simulations are mere scenarios
and actual occurrences cannot be conceived precisely.
Figure 2 shows four different instances; t = 35s5,
t=60s, t=285s, and t=110s, respectively from

upper left to lower right, of the location of the
hypothetical underwater landslide and corresponding
surface deformation. As the slump on the bottom
moves, a rise resembling the rooster tail behind a
fast-moving vessel develops on the surface and
grows. At t = 110s the rooster tail is seen to gain
considerable height. Depending on the ratio of the
hump speed to the surface wave speed or the Froude

number Fr = V/C = V/,/gh the overall shape of the
surface deformation, wave height, and location of
the tail show considerable variations. More specifi-
cally, the wave pattern is characterized by the
Froude number being equal to unity Fr = 1 (critical),
greater than unity Fr>1 (supercritical) or less than
unity Fr<1 (subcritical). In this example, as indicated
before, the Froude number is approximately unity
Fr=9.7/9.9 =0.98 in the constant depth region
since the hump speed is nearly the same as the
non-dispersive wave celerity hence the flow is critical.

Figure 3 gives the wave profiles along the center-
line of domain at the indicated four different
instances with and without %thn. The vertical scale
is normalized by the maximum hump height, 0.5 m.
Note that the total surface displacement between the
minimum and maximum (wave height) becomes as
much as 6 times the hump height. The effect of
%thm which is similar to dispersion, is most clearly
observed from the comparison at t = 110s. The dif-
ference in maximum wave height is nearly 20%, which
indicates a definitely non-negligible effect of %thrt
in the computations. From the physical point of view
the corrective effect of this particular term may be
argued as follows. Spatial variations of bottom accel-
eration necessarily spread the created surface distur-
bance over a wider region thus smearing or softening
the sharper wave forms. The same behavior is
observed for dispersion which counterbalances the

Figure 2. Location of the hypothetical underwater landslide and corresponding surface deformation for four different instances:

(@): t =35s, (b): t =60s, (c): t =855, and (d): t = 110s.
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Figure 3. Surface deformations along the centerline at four different instances (a): t = 35s, (b): t = 605, (c): t = 855, and (d):
t = 110s. Solid line: computation with %thn, red dash-dash-dot line: computation without %thn.

steepening of wave forms due to sheer nonlinearity.
Then, the presently computed reduction in wave
height is actually an anticipated and expected feature
caused by spatial variations in accelerative bottom
movements.

5. Concluding remarks

A Boussinesg-type wave model comprising time-
dependent bottom variations has been derived. The
model equations contain not only the usual bottom
velocity h; in the continuity equation but also three
new terms with time-dependent depth variations in
the momentum equation. These new terms are the
nonlinear contribution 3V (h?), the high-order disper-
sion term associated with bottom velocity
FhV[V - (hu)], and finally the linear contribution
involving bottom acceleration %th". Although the
first two terms would usually be negligible, the last
term %thm being linear, makes appreciable correc-
tions to the wave height (around 20% for the sample
case) hence must be included for reliable calculations.
Still, it should be pointed out h; in the continuity
equation is the main zeroth-order linear contribution,
which generates the surface motion.

The new set of equations, being also capable of mod-
eling relatively shorter waves due to improved dispersion
capabilities, may be used for convenient and accurate
modeling of surface waves generated especially by

underwater slides or piecewise faulting slow seaquakes.
Convenience is due to the use of the same set of equa-
tions instead of combining different models for wave-
generation and far-field propagation as for instance in
Laevholt, Pedersen, and Gisler (2008). Accuracy is basically
achieved by both the improved dispersion characteristics
of the model allowing relatively shorter wave propaga-
tion and the inclusion of corrective term %thn for
better wave height estimation.
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