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A B S T R A C T   

Morison’s equation is used for formulating forces and moments due to waves acting on circular cylinders of 
varying cross-sections and truncated forms. First, the usual case of bottom-mounted constant-diameter circular 
piles extending from seabed to free surface is revisited and then forces and moments for the truncated form are 
formulated. Further, linearly and parabolically varying diameter cases are considered for both bottom-mounted 
and truncated cylinders. The formulations are derived using linear wave theory; however, by adopting a heuristic 
nonlinear approach integrals are evaluated from pile bottom to wave crest instead of still water level. Corre-
sponding linear formulations are obtained as special cases by simply setting the non-dimensional nonlinearity 
parameters to zero. Thus, for each cylinder configuration two different force and moment formulas are presented 
by integrating to actual free surface and to still water level. All the results are arranged in forms which are 
practically easy to use. Finally, analytical expressions for determining maximum total force and moment values 
are given and sample calculations are presented for all configuration types.   

1. Introduction 

Morison, Johnson, O’Brien and Schaaf (1950) introduced a simple 
concept for estimating wave forces on piles. The approach has two basic 
assumptions: the total wave force is expressed as a superposition of drag 
and inertia forces while scattering of waves in presence of pile is 
completely neglected in accord with the Froude-Krylov hypothesis. The 
proposed equation then has become known briefly as the Morison 
equation. The final total force is usually formulated by using the hori-
zontal component of wave orbital velocity as given by linear theory. 
Nevertheless, the application is by no means limited to linear theory; 
Skjelbreia et al. (1960) employed the fifth-order Stokes wave theory 
while Dean (1974) gave calculations using Dean’s stream function the-
ory (1965). In this work, linear wave theory is used for the horizontal 
velocity; but as a heuristic attempt to include nonlinear effects, upper 
limits of integrals are set to the actual free surface or wave crest. This 
point is obviously not in line with linear wave theory which is formu-
lated for infinitesimal amplitudes and all surface variables are evaluated 
at the unperturbed or still water level. However, such empirical exten-
sion has its justification in the arguments that linear theory yields quite 
similar results to Stokes fifth-order theory even when used beyond its 
usual limits to predict the velocities above the still water level (Sarpkaya 
and Isaacson, 1981, p. 299). Finally, Sarpkaya and Isaacson (1981) 

emphasize that while Morison’s equation itself is heuristic in essence it is 
quite satisfactory in the drag and inertia dominated regimes and it is 
unlikely that an entirely new equation will replace it. 

In this work, basically two new features are considered for expanding 
the practical application area of Morison’s equation. One of these con-
cerns the geometry of piles. Besides the usual circular cylinders of 
constant diameter, circular cylinders of linearly and parabolically 
changing diameters are considered. Piles of varying diameters and 
truncated forms are becoming important especially for offshore wind 
turbines, floating or installed in relatively shallow depths (Hummel and 
Jenkens, 2015; Brito et al., 2015; Ross and Siew, 2015). Also considered 
are cylinders not extending to the seabed, which are relevant for floating 
type platforms. Another new feature of the present work concerns the 
wave kinematics. Applicable range of linear wave theory is stretched 
beyond the still water level by taking the upper limit of integrals to the 
wave crest. Results corresponding to the standard application of taking 
the upper limit of integration as the still water level are readily obtained 
by setting the nonlinearity parameters to zero. All the expressions 
derived are expressed in terms of non-dimensional parameters, which 
once computed, may be easily used for obtaining the desired results. In 
closing, a simple approach of computing wave heights for a given water 
depth over a range of wave periods is described and sample computa-
tions involving all configurations are presented for inter-comparisons as 
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well as providing numerical reference values. 

2. Morison’s equation 

The equation known briefly as Morison’s equation was proposed by 
Morison et al. (1950) as a practical means of calculating wave forces on 
vertical circular piles. The equation is composed of two parts, which deal 
respectively with drag and inertia forces and given as (Morison et al., 
1950; Sarpkaya and Isaacson, 1981; Chakrabarti, 2001) 

dF¼
1
2

ρ Cd

�
�
�
�U
�
�
�
�U dAp þ ρ Cm

dU
dt

d8 (1)  

where dF is the total infinitesimal force acting on the infinitesimal height 
dz of the pile, ρ the fluid density, U the horizontal flow velocity, dAp ¼

D dz the infinitesimal projected frontal area, d8 ¼ ðπ=4ÞD2 dz the infin-
itesimal displaced volume of the circular structure, Cd and Cm are the 
dimensionless constant coefficients of drag and inertia (mass), respec-
tively. The main issue with Morison’s equation is the determination of 
the constants Cd and Cm since comparisons with experimental data and 
field measurements show considerable scatter depending in principle on 
Keulegan-Carpenter number K ¼ UT=D where T is the flow period and D 
the diameter. An in-depth study of the subject can be found in Gud-
mestad and Moe (1996). 

The standard way of formulating the total force due to waves pro-
ceeds as follows. U is taken from linear theory, dU =dt the total accel-
eration is replaced by local acceleration ∂U =∂t as a part of linearization. 
Finally, the equation is integrated from the pile bottom, say z ¼ � h, to 
the still water level z ¼ 0. Here, the same procedure is followed except 
that whenever proclaimed the pile diameter is treated as a function of 
the vertical coordinate z. Also, the upper limit of the integration is set to 
the wave amplitude z¼ a ¼ H=2 and the linearization is carried out after 
the general result is obtained. 

Neglect of wave diffraction or wave scattering in the vicinity of pile 
necessarily requires relative smallness of pile in comparison to waves. A 
rule of thumb states that the ratio of pile diameter to incident wave-
length should be less than 1 =20 (SPM, 1984, p.7–103) for a justified use 
of Morison’s equation. See for instance Kurian et al. (2013) for com-
parisons between Morison’s equation and diffraction theory. 

3. Bottom mounted and truncated circular cylinders of constant 
diameter 

In line with the standard application of Morison’s equation (1) the 
horizontal velocity is taken from linear theory as 

Uðx; tÞ ¼
gkH
2ω

Ch kðzþ hÞ
Ch kh

cosðkx � ωtÞ (2)  

where g is the gravitational acceleration, k ¼ 2π=L the wave number, L 
the wavelength, h the water depth, H the wave height, ω the cyclic wave 
frequency. Linear theory dispersion relationship ω2 ¼ gk tanh kh is used 
to determine the wave number for a given cyclic frequency. For shorter 
notation the hyperbolic cosine function cosh kh and the hyperbolic sine 
function sinh kh are denoted by Ch kh and Sh kh, respectively. 

The total horizontal acceleration is dU =dt ¼ ∂U=∂tþ U∂U= ∂xþ W∂ 
U=∂z; however, following the usual linearization process dU =dt ’ ∂U= ∂t 
hence 

dU
dt
’

gkH
2

Ch kðz þ hÞ
Ch kh

sinðkx � ωtÞ (3) 

Isaacson (1979) concluded that the above approximation would 
overestimate the acceleration but be acceptable for practical 
applications. 

Using the expressions given for velocity U and acceleration dU =dt 
and writing in general dAp ¼ DðzÞ dz for the frontal area element and d8
¼ ðπ=4ÞD2ðzÞ dz for the volume element in (1) and integrating over the 

pile height gives for the in-line, x ¼ 0, force for a bottom-mounted 
cylinder 

F¼
1
2

ρgCdD0H2 2k
8 Sh 2kh

�
�
�
�
�
cos ωt

�
�
�
�
�
cos ωt �

Z a

� h

�
DðzÞ
D0

�

½1þCh 2kðzþ hÞ�dz

� ρgCm
π
4

D2
0H

k
2 Ch kh

sin ωt �
Z a

� h

�
DðzÞ
D0

�2

Ch kðzþ hÞ dz

(4)  

where D0 is the pile diameter at the still water level z ¼ 0. The above 
expression of total force is obviously a straightforward adaption of 
Morison’s equation to the case of vertically varying pile diameter DðzÞ. 
Since the change in diameter is gradual it is expected that the original 
formulation, equation (1), would still hold good in producing realistic 
results. Obviously, the true validation can only be done by measure-
ment, which is beyond the scope of the present theoretical work. 

The total moment about the bottom z¼ � h is calculated from 

M¼
1
2

ρgCdD0H2 2kh
8 Sh 2kh

�
�
�
�
�
cos ωt

�
�
�
�
�
cos ωt

�

Z a

� h

�
1þ

z
h

��DðzÞ
D0

�

½1þCh 2kðzþ hÞ�dz � ρgCm
π
4

D2
0H

kh
2 Ch kh

sin ωt

�

Z a

� h

�
1þ

z
h

��DðzÞ
D0

�2

Ch kðzþ hÞ dz

(5)  

Note that the moment arm ðhþ zÞ is expressed as hð1þ z=hÞ. For trun-
cated cylinders the moment arm is changed to ðdþ zÞ ¼ dð1þ z=dÞ and 
the lower limit of integrals is set to � d, the submerged depth of the 
cylinder. 

3.1. Bottom-mounted circular cylinders of constant diameter 

First, circular cylinders of constant diameter extending from seabed 
to free surface are considered. Fig. 1 shows on the left a bottom-mounted 
circular cylinder with immersed height h, which is equal to the water 
depth. The pile diameter DðzÞ ¼ D0 is constant. Integrating from z¼ � h 
to the wave crest z¼ a ¼ H=2 gives the total time-dependent force 
acting on a vertical circular cylinder extending from seabed to free 
surface as F ¼ Fdjcos ωtjcos ωt � Fi sin ωt. The drag and inertia force 

components are expressed as Fd ¼ Fd0F
�

d and Fi ¼ Fi0F
�

i where 

Fd0¼
1
2 ρgCdD0H2

8 Sh 2μh
Fi0 ¼

π
4 ρgCmD2

0H
2 Ch μh

(6)  

and the non-dimensional force components F
�

d and F
�

i are 

Fig. 1. Circular cylinders of constant diameter: bottom mounted (left) and 
truncated (right). 
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F
�

d ¼ 2μhð1þ εhÞ þ Sh 2μhð1þ εhÞ (7)  

F
�

i ¼ Sh μhð1þ εhÞ (8)  

in which εh ¼ a=h and μh ¼ kh. 
Similarly, the components of total moment 

M¼ Mdjcos ωtjcos ωt � Mi sin ωt are expressed as Md ¼ hFd0M
�

d and 

Mi ¼ hFi0M
�

i. The non-dimensional moment components M
�

d and M
�

i are 

M
�

d ¼ μhð1þ εhÞ
2
þ ð1þ εhÞ Sh 2μhð1þ εhÞ þ ½1 � Ch 2μhð1þ εhÞ�=2μh

(9)  

M
�

i¼ð1þ εhÞ Sh μhð1þ εhÞ þ ½1 � Ch μhð1þ εhÞ�=μh (10) 

The linearized forms of non-dimensional force and moment compo-
nents are obtained by simply setting the nonlinearity parameter εh to 
zero. 

F
�

dl¼ 2μh þ Sh 2μh (11)  

F
�

il ¼ Sh μh (12)  

M
�

dl¼ μh þ Sh 2μh þ ð1 � Ch 2μhÞ=2μh (13)  

M
�

il¼Sh μh þ ð1 � Ch μhÞ=μh (14)  

where the additional subscript l indicates linear expressions. Equations 
(11)–(14) are in complete agreement with the expressions given in the 
relevant literature; see for instance SPM (1984), p.7–111/112. These 
equations are the standard ones for constant diameter piles obtained 
form Morison’s general expression (1) by the use of linear wave theory. 

3.2. Truncated circular cylinders of constant diameter 

Fig. 1 shows on the right a truncated circular cylinder with constant 
diameter D0 and penetration depth d. The integrals are now evaluated 
from � d to a, and the moment arm is set to dð1þ z=dÞ. Thus, the non- 
dimensional drag and inertia force and moment components for a 
truncated circular cylinder of constant diameter are 

F
�

d ¼ 2μdð1þ εdÞ þ Sh 2μhð1þ εhÞ � Sh 2μhð1 � ξÞ (15)  

F
�

i ¼Sh μhð1þ εhÞ � Sh μhð1 � ξÞ (16)  

M
�

d ¼ μdð1þ εdÞ
2
þ ð1þ εdÞ Sh 2μhð1þ εhÞ

� ½Ch 2μhð1þ εhÞ � Ch 2μhð1 � ξÞ�=2μd (17)  

M
�

i¼ð1þ εdÞ Sh μhð1þ εhÞ � ½Ch μhð1þ εhÞ � Ch μhð1 � ξÞ�=μd (18)  

where εd ¼ a=d, μd ¼ kd, and ξ ¼ d=h. Note that for truncated cylinders 

the dimensional moment values are Md ¼ dFd0M
�

d and Mi ¼ dFi0M
�

i; 
previously used h has been now replaced by the truncated cylinder depth 
d. The corresponding linearized forms are 

F
�

d ¼ 2μd þ Sh 2μh � Sh 2μhð1 � ξÞ (19)  

F
�

i ¼Sh μh � Sh μhð1 � ξÞ (20)  

M
�

d ¼ μd þ Sh 2μh � ½ Ch 2μh � Ch 2μhð1 � ξÞ�=2μd (21)  

M
�

i¼ Sh μh � ½ Ch μh � Ch μhð1 � ξÞ�=μd (22) 

Note that when the submerged height of the truncated pile or the 
penetration depth is equal to the water depth ξ¼ d=h ¼ 1 and εd ¼ εh, 

μd ¼ μh, the above expressions become identical with those given for 
bottom-mounted cylinders in x3.1. 

4. Bottom mounted and truncated circular cylinders of linearly 
varying diameter 

Piles with linearly varying diameters as shown in Fig. 2 are consid-
ered now. In the formulations the pile diameter at the bottom needs not 
be greater than the pile diameter at the still water level but for appli-
cations this is normally the case; therefore, the figures are drawn 
accordingly. 

4.1. Bottom-mounted circular cylinders of linearly varying diameter 

The linear variation of the pile diameter for bottom mounted cylin-
ders is formulated as DðzÞ ¼ D0ð1 � rhz=hÞwhere rh¼ Dh=D0 � 1 with D0 
denoting the diameter at the still water level and Dh the diameter at the 
seabed as shown in Fig. 2 on the left. Setting DðzÞ as described now in the 
general force and moment formulations and performing the integrals 
from z¼ � h to the wave crest z¼ a ¼ H=2 give for the non-dimensional 
force and moment components 

F
�

d ¼ 2μhð1þ εhÞ½1þ rhð1 � εhÞ=2� þ ð1 � rhεhÞ Sh 2μhð1þ εhÞ

� ðrh=2μhÞ½ 1 � Ch 2μhð1þ εhÞ� (23)  

F
�

i¼
h
ð1 � rhεhÞ

2
þ 2r2

h

�
μ2

h

i
Sh μhð1þ εhÞ � ð2rh=μhÞ½ð1þ rhÞ � ð1

� rhεhÞ Ch μhð1þ εhÞ� (24)  

M
�

d ¼ μh

h
ð1þ εhÞ

2
þ rh

�
1 � 3ε2

h � 2ε3
h

��
3
i
þ
�
ð1þ εhÞ � rh

�
εh þ ε2

h

þ 1=2μ2
h

��
Sh 2μhð1þ εhÞ þ ½ð1þ rhÞ � ð1

� rhð1þ 2εhÞÞ Ch 2μhð1þ εhÞ�=2μh (25)  

M
�

i ¼
�
ð1þ εhÞð1 � 2rhεhÞ � 2rhð2 � rhÞ

�
μ2

h

�
Sh μhð1þ εhÞ þ r2

hεh
�
εh þ ε2

h

þ 6
�

μ2
h

�
Sh μhð1þ εhÞ �

��
1 � 2rh

�
1 � 3rh

�
μ2

h

���
μh

�
Ch μhð1þ εhÞ

þ ½4 � rhð2þ 3εhÞ�ðrhεh=μhÞ Ch μhð1þ εhÞ þ
h
ð1þ rhÞ

2
þ 6r2

h

�
μ2

h

i.
μh

(26) 

The linearized forms are 

F
�

dl¼ 2μhð1þ rh=2Þ þ Sh 2μh � ðrh=2μhÞð1 � Ch 2μhÞ (27)  

F
�

il¼
�
1þ 2r2

h

�
μ2

h

�
Sh μh � ð2rh=μhÞð1þ rh � Ch μhÞ (28)  

Fig. 2. Circular cylinders of linearly varying diameter: bottom mounted (left) 
and truncated (right). 
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M
�

dl¼ μhð1þ rh=3Þ þ
�
1 � rh=2μ2

h

�
Sh 2μh

þ ½ð1þ rhÞ � ð1 � rhÞ Ch 2μh�=2μh (29)  

M
�

il¼
�
1 � 2rhð2 � rhÞ

�
μ2

h

�
Sh μh �

��
1 � 2rh

�
1 � 3rh

�
μ2

h

���
μh

�
Ch μh

þ
h
ð1þ rhÞ

2
þ 6r2

h

�
μ2

h

i.
μh

(30) 

Since the cylinders are bottom mounted, the dimensional moment 

values are calculated as Md ¼ hFd0M
�

d, etc. by using h. 
Note that when the diameter at the bottom Dh is equal to the diam-

eter at the still water level D0, that is, when the cylinder diameter is 
constant rh¼ Dh=D0 � 1 ¼ 0 vanishes, the above formulations reduce to 
the constant diameter case given in x3.1. 

A fine detail concerning only nonlinear formulations must be pointed 
out. Since the linear variation of diameter continues above the still water 
level the diameter becomes somewhat smaller hence integrals for 
nonlinear cases give slightly lower force and moment values. A similar 
situation applies to the parabolically varying cases but there the pile 
diameter reaches the lowest value at the still water level and then above 
this level begins gradually increasing hence in this case produces 
somewhat higher force and moment values. Although a separate inte-
gration would be possible for above the still water level, such an 
approach would have complicated the already complex equations 
exceedingly. Therefore, considering that the error introduced to 
nonlinear computations are relatively smaller, this problem is ignored. 
Of course, such concerns do not apply to the linear formulations at all. 

4.2. Truncated circular cylinders of linearly varying diameter 

The linear variation of the pile diameter for truncated cylinders is 
formulated as DðzÞ ¼ D0ð1 � rdz=dÞ where rd¼ Dd=D0 � 1 with D0 
denoting the diameter at the still water level and Dd the diameter at the 
bottom of the truncated cylinder as shown in Fig. 2 on the right. Setting 
DðzÞ as described now in the general force and moment formulations and 
performing integrals from z¼ � d to the wave crest z¼ a ¼ H= 2 give for 
the non-dimensional force and moment components 

F
�

d ¼ 2μdð1þ εdÞ½1þ rdð1 � εdÞ=2� þ ð1 � rdεdÞ Sh 2μhð1þ εhÞ

� ð1þ rdÞ Sh 2μhð1 � ξÞ þ ðrd=2μdÞ½ Ch 2μhð1þ εhÞ � Ch 2μhð1 � ξÞ�
(31)  

F
�

i ¼
h
ð1 � rdεdÞ

2
þ 2r2

d

�
μ2

d

i
Sh μhð1þ εhÞ

�
h
ð1þ rdÞ

2
þ 2r2

d

�
μ2

d

i
Sh μhð1 � ξÞ þ ð2rd=μdÞð1 � rdεdÞ Ch μhð1þ εhÞ

� ð2rd=μdÞð1þ rdÞ Ch μhð1 � ξÞ
(32)  

M
�

d ¼ μd

h
ð1þ εdÞ

2
þ rd

�
1 � 3ε2

d � 2ε3
d

��
3
i
þ
�
1þ εd � rd

�
εd þ ε2

d

þ 1=2μ2
d

��
Sh 2μhð1þ εhÞ þ

�
rd=2μ2

d

�
Sh 2μhð1 � ξÞ

� f½1 � rdð1þ 2εdÞ�=2μdg Ch 2μhð1þ εhÞ þ ½ð1þ rdÞ=2μd� Ch 2μhð1 � ξÞ
(33)  

M
�

i¼
�
ð1þ εdÞð1 � 2rdεdÞ � 2rdð2 � rdÞ

�
μ2

d

�
Sh μhð1þ εhÞ þ r2

dεd
�
εd þ ε2

d

þ 6
�

μ2
d

�
Sh μhð1þ εhÞ þ 4

�
rd
�

μ2
d

�
ð1þ rdÞ Sh μhð1 � ξÞ �

��
1 � 2rd

�
1

� 3rd
�

μ2
d

���
μd
�

Ch μhð1þ εhÞ þ ðrdεd=μdÞ½4 � rdð2þ 3εdÞ� Ch μhð1þ εhÞ

þ
nh
ð1þ rdÞ

2
þ 6r2

d

�
μ2

d

i.
μd

o
Ch μhð1 � ξÞ

(34) 

The linearized forms are 

F
�

d ¼ 2μdð1þ rd=2Þ þ Sh 2μh � ð1þ rdÞ Sh 2μhð1 � ξÞ

þ ðrd=2μdÞ½ Ch 2μh � Ch 2μhð1 � ξÞ� (35)  

F
�

i¼
�
1þ 2r2

d

�
μ2

d

�
Sh μh �

h
ð1þ rdÞ

2
þ 2r2

d

�
μ2

d

i
Sh μhð1 � ξÞ

þ ð2rd=μdÞ½ Ch μh � ð1þ rdÞ Ch μhð1 � ξÞ� (36)  

M
�

d ¼ μdð1þ rd=3Þ þ
�
1 � rd=2μ2

d

�
Sh 2μh þ

�
rd=2μ2

d

�
Sh 2μhð1 � ξÞ

� ½ð1 � rdÞ=2μd�Ch 2μh þ ½ð1þ rdÞ=2μd�Ch 2μhð1 � ξÞ (37)  

M
�

i ¼
�
1 � 2rdð2 � rdÞ

�
μ2

d

�
Sh μh þ 4

�
rd
�

μ2
d

�
ð1þ rdÞ Sh μhð1 � ξÞ

�
��

1 � 2rd
�
1 � 3rd

�
μ2

d

���
μd
�

Ch μh

þ
nh
ð1þ rdÞ

2
þ 6r2

d

�
μ2

d

i.
μd

o
Ch μhð1 � ξÞ (38) 

Once more it is noted that for all truncated cylinders the moments are 

calculated by the use of d as in Md ¼ dFd0M
�

d, etc. 
If the diameter at the bottom of cylinder Dd is equal to the diameter at 

the still water level D0, that is, when the cylinder diameter is constant 
rd¼ Dd=D0 � 1 ¼ 0 vanishes, the above formulations reduce to the con-
stant diameter case given in x3.2. Further, if ξ¼ d=h ¼ 1 then εd ¼ εh and 
μd ¼ μh, the above expressions become identical with those given for 
bottom-mounted cylinders in x3.1. Indeed, equations (31)–(34) comprise 
all the formulas derived till now, (7)–(30) and (35)–(38), as special cases. 
Therefore, they can be used to compute the wave forces and moments for 
any previous case desired by setting the parameters appropriately. 

5. Bottom mounted and truncated circular cylinders of 
parabolically varying diameter 

Piles with parabolically varying diameters as shown in Fig. 3 are 
considered now. Once again, in the formulations the pile diameter at the 
bottom need not be greater than the pile diameter at the still water level 
but for applications this is normally the case; therefore, the figures are 
drawn accordingly. 

5.1. Bottom-mounted circular cylinders of parabolically varying diameter 

The parabolic variation of the pile diameter for bottom mounted 
cylinders is formulated as DðzÞ ¼ D0½1þrhðz=hÞ2� where rh¼ Dh=D0 � 1 
with D0 denoting the diameter at the still water level and Dh the diam-
eter at the seabed as shown in Fig. 3 on the left. Setting DðzÞ as described 
now in the general force and moment formulations and performing the 
integrals from z¼ � h to the wave crest z¼ a ¼ H=2 give for the non- 
dimensional force and moment components 

F
�

d ¼ 2μh

�
1þ εhþ rh

�
1þ ε3

h

��
3
�
þ
�
1þ rh

�
ε2

h þ 1=2μ2
h

��
Sh 2μhð1þ εhÞ

� rh½1þ εh Ch 2μhð1þ εhÞ�=μh

(39)  

F
�

i¼
n�

1þ rhε2
h

�2
þ 4
�
rh
�

μ2
h

��
1þ 3rh

�
ε2

h þ 2
�

μ2
h

��o
Sh μhð1þ εhÞ

� 4ðrhεh=μhÞ
�
1þ rh

�
ε2

h þ 6
�

μ2
h

��
Ch μhð1þ εhÞ � 4ðrh=μhÞ

�
1þ rh

�
1

þ 6
�

μ2
h

��

(40)  

M
�

d ¼ μh

h
ð1þ εhÞ

2
þ rh

�
1þ 4ε3

h þ 3ε4
h

��
6
i

þ
�
1þ εhþ rhð1þ 3εhÞ=2μ2

hþ rhε2
hð1þ εhÞ

�
Sh 2μhð1þ εhÞ

�
���

1þ rh
�
2εhþ 3ε2

hþ 3=2μ2
h

���
2μh
�

Ch 2μhð1þ εhÞ

þ
�
1þ rh

�
1þ 3=2μ2

h

���
2μh

(41)  
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M
�

i¼
�

1þ εhþ 2rh
�
2ð1þ 3εhÞ

�
μ2

hþ ε2
hð1þ εhÞ

��
Sh μhð1þ εhÞ

þ r2
h

�
24ð1þ 5εhÞ

�
μ4

hþ 4ε2
hð3þ 5εhÞ

�
μ2

hþ ε4
hð1þ εhÞ

�
Sh μhð1þ εhÞ

�
��

1þ 2rh
�
6
�

μ2
h þ εhð2þ 3εhÞ

���
μh
�

Ch μhð1þ εhÞ

�
�
ε3

hð4þ 5εhÞþ 12εhð2þ 5εhÞ
�

μ2
hþ 120

�
μ4

h

��
r2

h

�
μh

�
Ch μhð1þ εhÞ

þ
h
ð1þ rhÞ

2
þ 12rhð1þ 3rhÞ

�
μ2

hþ 120r2
h

�
μ4

h

i.
μh

(42) 

The linearized forms are 

F
�

dl¼ 2μhð1þ rh=3Þ þ
�
1þ rh=2μ2

h

�
Sh 2μh � rh=μh (43)  

F
�

il¼
�
1þ 4rh

�
1þ 6rh

�
μ2

h

��
μ2

h

�
Sh μh � 4ðrh=μhÞ

�
1þ rh

�
1þ 6

�
μ2

h

��
(44)  

M
�

dl¼ μhð1þ rh=6Þ þ
�
1þ rh=2μ2

h

�
Sh 2μh �

��
1þ 3rh=2μ2

h

��
2μh
�
Ch 2μh

þ
�
1þ rh

�
1þ 3=2μ2

h

���
2μh

(45)  

M
�

il¼
�
1þ 4rh

�
μ2

h þ 24r2
h

�
μ4

h

�
Sh μh �

��
1þ 12rh

�
μ2

h þ 120r2
h

�
μ4

h

��
μh

�
Ch μh

þ
h
ð1þ rhÞ

2
þ 12rhð1þ 3rhÞ

�
μ2

hþ 120r2
h

�
μ4

h

i.
μh

(46) 

The dimensional moment values are computed by using h as in Md ¼

hFd0M
�

d, etc. since the cylinders considered are bottom mounted. Note 
that when the diameter at the bottom Dh is equal to the diameter at the 
still water level D0, that is, when the cylinder diameter is constant 
rh¼ Dh=D0 � 1 ¼ 0 vanishes and the above formulations reduce to the 
constant diameter case given in x3.1. 

5.2. Truncated circular cylinders of parabolically varying diameter 

The parabolic variation of the pile diameter for bottom mounted 
cylinders is formulated as DðzÞ ¼ D0½1þrdðz=dÞ2� where rd¼ Dd= D0� 1 
with D0 denoting the diameter at the still water level and Dd the diameter 
at the bottom of the truncated cylinder as shown in Fig. 3 on the right. 
Setting DðzÞ as described now in the general force and moment formu-
lations and performing the integrals from z¼ � h to the wave crest z¼ a ¼
H=2 give for the non-dimensional force and moment components 

F
�

d ¼ 2μd

�
1þ εd þ rd

�
1þ ε3

d

��
3
�
þ
�
1þ rd

�
ε2

d þ 1=2μ2
d

��
Sh 2μhð1þ εhÞ

�
�
1þ rd

�
1þ 1=2μ2

d

��
Sh 2μhð1 � ξÞ � ðrdεd=μdÞ Ch 2μhð1þ εhÞ

� ðrd=μdÞ Ch 2μhð1 � ξÞ
(47)  

F
�

i¼
n�

1þ rdε2
d

�2
þ 4
�
rd
�

μ2
d

��
1þ 3rd

�
ε2

d þ 2
�

μ2
d

��o
Sh μhð1þ εhÞ

�
n
ð1þ rdÞ

2
þ 4
�
rd
�

μ2
d

��
1þ 3rd

�
1þ 2

�
μ2

d

��o
Sh μhð1 � ξÞ

� 4ðrdεd=μdÞ
�
1þ rd

�
ε2

d þ 6
�

μ2
d

��
Ch μhð1þ εhÞ � 4ðrd=μdÞ

�
1þ rd

�
1

þ 6
�

μ2
d

��
Ch μhð1 � ξÞ (48)  

M
�

d ¼ μd

h
ð1þ εdÞ

2
þ rd

�
1þ 4ε3

d þ 3ε4
d

��
6
i

þ
�
1þ εd þ rdε2

dð1þ εdÞþ rdð1þ 3εdÞ=2μ2
d

�
Sh 2μhð1þ εhÞ

þ
�
rd
�

μ2
d

�
Sh 2μhð1 � ξÞ �

���
1þ rd

�
2εd þ 3ε2

d þ 3=2μ2
d

���
2μd
�

Ch 2μhð1þ εhÞþ
��

1þ rd
�
1þ 3=2μ2

d

���
2μd

�
Ch 2μhð1 � ξÞ

(49)  

M
�

i ¼
�

1þ εd þ 2rd
�
ε2

dð1þ εdÞþ 2ð1þ 3εdÞ
�

μ2
d

��
Sh μhð1þ εhÞ

þ r2
d

�
ε4

dð1þ εdÞþ 4ε2
dð3þ 5εdÞ

�
μ2

d þ 24ð1þ 5εdÞ
�

μ4
d

�
Sh μhð1þ εhÞ

þ 8
�
rd
�

μ2
d

��
1þ rd

�
1þ 12

�
μ2

d

��
Sh μhð1 � ξÞ �

��
1þ 2rd

�
εdð2þ 3εdÞ

þ 6
�

μ2
d

���
μd

�
Ch μhð1þ εhÞ

�
�
r2

d

�
μd
��

ε3
dð4þ 5εdÞþ 12εdð2þ 5εdÞ

�
μ2

d þ 120
�

μ4
d

�
Ch μhð1þ εhÞ

þ
nh
ð1þ rdÞ

2
þ 12rdð1þ 3rdÞ

�
μ2

d þ 120r2
d

�
μ4

d

i.
μd

o
Ch μhð1 � ξÞ

(50) 

The linearized forms are 

F
�

dl¼ 2μdð1þ rd=3Þ þ
�
1þ rd=2μ2

d

�
Sh 2μh �

�
1þ rd

�
1

þ 1=2μ2
d

��
Sh 2μhð1 � ξÞ � ðrd=μdÞ Ch 2μhð1 � ξÞ (51)  

F
�

il¼
�
1þ 4

�
rd
�

μ2
d

��
1þ 6rd

�
μ2

d

� �
Sh μh �

n
ð1þ rdÞ

2
þ 4
�
rd
�

μ2
d

��
1þ 3rd

�
1

þ 2
�

μ2
d

��o
Sh μhð1 � ξÞ � 4ðrd=μdÞ

�
1þ rd

�
1þ 6

�
μ2

d

��
Ch μhð1 � ξÞ

(52)  

Fig. 3. Circular cylinders of parabolically varying diameter: bottom mounted (left) and truncated (right).  
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M
�

dl¼ μdð1þ rd=6Þ þ
�
1þ rd=2μ2

d

�
Sh 2μh þ

�
rd
�

μ2
d

�
Sh 2μhð1 � ξÞ �

��
1

þ 3rd=2μ2
d

��
2μd

�
Ch 2μh þ

��
1þ rd

�
1þ 3=2μ2

d

���
2μd

�
Ch 2μhð1 � ξÞ

(53)  

M
�

il¼
�
1þ 4rd

�
μ2

d þ 24r2
d

�
μ4

d

�
Sh μh þ 8

�
rd
�

μ2
d

��
1þ rd

�
1

þ 12
�

μ2
d

��
Sh μhð1 � ξÞ �

��
1þ 12rd

�
μ2

d þ 120r2
d

�
μ4

d

��
μd
�

Ch μh

þ
nh
ð1þ rdÞ

2
þ 12rdð1þ 3rdÞ

�
μ2

d þ 120r2
d

�
μ4

d

i.
μd

o
Ch μhð1 � ξÞ (54) 

As for all truncated cylinders the moments are calculated by the use 

of d as in Md ¼ dFd0M
�

d, etc. 

6. Maximum force and moment values 

Time-dependent total force and moment values have the same 
functional forms; F¼ Fdjcos ωtjcos ωt � Fi sin ωt and M ¼
Mdjcos ωtjcos ωt � Mi sin ωt. In order to determine the time corre-
sponding to a maximum or minimum, the time derivative of the function 
is set to zero. Considering the expression for the force while ignoring the 
absolute value sign (which can be shown not to affect the result for 
maximum) gives 

dF
dt
¼ � 2ωFd cos ωt sin ωt � ωFi cos ωt

¼ � ωð2Fd sin ωt þ FiÞcos ωt ¼ 0
(55)  

which in turn requires either 2Fd sin ωtþFi ¼ 0 or cos ωt ¼ 0. The 
second choice seems like a trivial solution; however, this is not the case 
here: if the first choice fails when Fi =2Fd > 1, the second choice provides 
the solution. Thus, if Fi =2Fd � 1 then 

ωtmax ¼ θm ¼ � arcsin
�

Fi

2Fd

�

⇒ Fmax ¼ Fd þ

�
F2

i

4Fd

�

(56)  

since cos2θm ¼ 1 � F2
i =4F2

d . The above expression for Fmax was given in 
Morison et al. (1950); however, the second possibility, when Fi =2Fd � 1, 
was not considered. If Fi =2Fd � 1 then 

ωtmax ¼ θm ¼ �
π
2

⇒ Fmax ¼ �Fi (57) 

Note that when Fi =2Fd ¼ 1 both solutions become identical; specif-
ically, θm in (56) becomes � π=2 and Fmax¼ Fdcos2ð� π=2Þ þ F2

i =2Fd ¼ Fi 

since 2Fd ¼ Fi. For obtaining Mmax, Fi and Fd are replaced by Mi and Md in 
the above formulations. 

7. A simple approach of estimating wave heights 

Estimation of wave heights in a given region is essential for 
computing the wave forces and moments acting on a pile. A very simple 
but realistic approach, based on a given water depth of a region and a 
range of periods is suggested. First, a general nonlinearity parameter ϵ 
valid for arbitrary relative depths is recalled (Beji, 1995): 

ϵ ¼
gH
C2

p
(58)  

where g is the gravitational acceleration, H the wave height, and Cp the 
linear theory phase celerity Cp ¼ ½ðg=kÞtanh kh�1=2. This nonlinearity 
parameter embodies both the shallow water parameter ϵs ¼ H=h when 
C2

p ¼ gh and deep water parameter ϵd ¼ kH when C2
p ¼ g= k as special 

cases; therefore, it has the advantage of applicability over the entire 
relative water depths. Moreover, setting ϵ to the constant value 0.88 
results in Miche’s wave breaking criterion (Miche, 1951). 

For a given water depth it is possible to proceed by selecting a wide 
range of possible incident wave periods and setting ϵ to a meaningful 
constant value to calculate corresponding wave heights according to the 

general nonlinearity parameter given in (58). Use of the breaking cri-
terion constant 0.88 would result in extremely large wave heights 
therefore a simple design criterion for the North Sea set by DnV (Det 
Norske Veritas) back in 1974 is referred to. Accordingly, for deep water 
waves a 100 ft ’ 30:5 m wave height with a period of 15 s was adopted 
as a 100-year wave or 100-year return interval wave (Sarpkaya and 
Isaacson, 1981, p. 293). The steepness of this particular wave can be 
computed from ϵd ¼ kH with deep water wave number 
k¼ ω2=g ¼ 0:01788 rad=m corresponding to T ¼ 15 s period hence ϵd ¼

0:55. Thus, here wave heights are determined from the general 
nonlinearity parameter as H ¼ ϵC2

p=g by setting ϵ ¼ 0:55 and computing 
Cp according to a given water depth and period. Fig. 4 depicts the period 
versus wave height curves for different water depths ranging from h ¼
10 m to h→∞ (deep water). 

Wave height curves for finite water depths show initially a steep 
increase with increasing period but then assume a horizontal character 
for larger periods as it asymptotically approaches to the shallow water 
wave height limit according to ϵs ¼ H=h ¼ 0:55 so that H ¼ 0:55⋅h. On 
the other hand, deep water case exhibits a completely different character 
and wave heights increase unboundedly with increasing period. This is 
in accord with unbounded increase of wavelength with increasing 
period. More specifically, for deep water waves ϵd ¼ kH and L0 ¼ gT2=

2π therefore H ¼ ϵdgT2=4π2 hence the wave height is proportional to the 
square of wave period. For ϵ ¼ 0:55 and T ¼ 15 s the wave height is 
H¼ 0:136T2 ’ 30:5 m as initially selected. 

It must be emphasized that for nonlinear waves, as for the sample 
case of ϵ ¼ 0:55, the linear acceleration field given by equation (3) does 
not apply strictly. Its use for highly nonlinear waves should be viewed as 
a part of heuristic approach employed here for nonlinear computations. 

8. Sample calculations of wave forces and moments 

Sample calculations of wave forces and moments are now presented 
for the wave height versus period range corresponding to the water 
depth h ¼ 10 m in Fig. 4. The pile diameter for constant cross-section 
case is taken as D0 ¼ Dh ¼ 3:5 m. For the cases of linearly and para-
bolically varying piles the diameters at the surface and bottom are 
determined such that the submerged volumes are equal to the constant- 
diameter case. In order to determine diameters a definite ratio of the 
bottom to surface diameter must be selected; this ratio is set to 
Dh =D0 ¼ Dd=D0 ¼ 1:5 for both bottom-mounted and truncated cylinders 
of linearly and parabolically varying diameters. For all the calculations 
Cd ¼ 0:7 and Cm ¼ 1:6 are used as typical representative values 

Fig. 4. Wave heights computed by setting ϵ ¼ 0:55 for a range of wave periods 
and water depths. 
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(Gudmestad and Moe, 1996; SPM, 1984; Sarpkaya and Isaacson, 1981). 
The drag and inertia coefficients are by no means fixed hence the 
selected values should only be viewed as acceptable choices. Finally, 
maximum force and moment values are determined according to 
equations (56) and (57). 

8.1. Bottom mounted cylinders 

Setting rh¼ Dh=D0 � 1 ¼ 0:5 for bottom-mounted piles and equating 
the submerged volumes give for the surface and bottom diameters 
(rounded off) D0 ¼ 2:8 m, Dh ¼ 4:2 m, and D0 ¼ 3:0 m, Dh ¼ 4:5 m, 
respectively for linearly and parabolically varying piles. The submerged 
volume for all the cases is approximately 96:2 m3. 

Fig. 5 shows maximum force curves within T¼ 1 � 15 s period range 
according to linear and nonlinear computations for the constant, para-
bolically varying, and linearly varying diameter cases. The upper three 
curves are nonlinear and lower three curves are linear computations. For 
the nonlinear computations the maximum force values corresponding to 
the linearly varying pile diameter case are the lowest among all but this 
must be observed with care, giving allowance for further reduction in pile 
diameter above the still water level as pointed out at the end of x4.1 in some 
detail. Nevertheless, for nonlinear computations it may be safely stated 
that constant diameter case is subjected to highest wave loads compared to 
any other within the entire wave period range. Linear calculations on the 
other hand indicate clearly that linearly and parabolically varying diam-
eter cases are virtually the same and only slightly lower than the constant 
diameter case. Overall, the nonlinear force values are approximately 30%– 
40% greater than their linear counterparts over the range of periods but 
this ratio is quite realistic when compared with 80% greater value reported 
for cnoidal theory (Sarpkaya and Isaacson, 1981, p. 456). However, once 
more it must be emphasized that the nonlinear computations are hybrid in 
the sense that linear theory formulation for the horizontal velocity is used 
while the vertical integration for each force component is carried out to the 
wave amplitude value above the still water level hence the results should 
be viewed with caution. 

Fig. 6 shows the corresponding moment values about the bottom of 
the pile or the mud line for bottom mounted piles. The general trend of 
the curves is quite similar to the force curves but the differences with the 
constant diameter case are accentuated. It is recalled that the piles are all 
bottom mounted at d¼ h ¼ 10 m water depth and that the underwater 
submerged volume of each pile is the same as the constant diameter 
case. 

Fig. 5. Variations of maximum horizontal force for bottom-mounted piles due 
to wave heights computed for ϵ ¼ 0:55 and h ¼ 10 m water depth within 
T¼ 1 � 15 s period range. Upper three curves are nonlinear and lower three 
curves are linear computations. Black solid curves indicate constant, red circle 
curves parabolically varying, and finally blue triangle curves linearly varying 
diameter cases. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the Web version of this article.) 

Fig. 6. Variations of wave period versus maximum moment about the bottom 
of the bottom-mounted pile. All the parameters are the same as used for Fig. 5. 

Fig. 7. Variations of maximum horizontal force for truncated piles with 
d¼ h=2 ¼ 5 m due to wave heights computed for ϵ ¼ 0:55 and h ¼ 10 m water 
depth within T¼ 1 � 15 s period range. Upper three curves are nonlinear and 
lower three curves are linear computations. Black solid curves indicate con-
stant, red circle curves parabolically varying, and finally blue triangle curves 
linearly varying diameter cases. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 8. Variations of wave period versus maximum moment about the bottom 
of the truncated pile. All the parameters are the same as used for Fig. 7. 
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8.2. Truncated cylinders 

The force and moment computations presented for bottom-mounted 
cylinders are now repeated for truncated cylinders with d¼ h= 2 ¼ 5 m 
and rd¼ Dd=D0 � 1 ¼ 0:5 again. The submerged volume for all the cases 
is approximately 48:1 m3 –half the bottom-mounted case so that the 
surface and bottom diameters are again D0 ¼ 2:8 m, Dh ¼ 4:2 m, and 
D0 ¼ 3:0 m, Dh ¼ 4:5 m, respectively for linearly and parabolically 
varying piles. 

Fig. 7 may be viewed as the counterpart of Fig. 5 for truncated cyl-
inders. The overall characteristics of the curves in Figs. 5 and 7 are quite 
similar the only difference being in the scale or the range of forces. 
Forces acting on truncated cylinders are approximately 40% lower than 
those of bottom-mounted cylinders. Since orbital motions diminish 
exponentially with depth this reduction in force is less than the trun-
cation depth of 50% . Bottom moment variations of truncated cylinders 
given in Fig. 8 is likewise the counterpart of Fig. 6 and the two figures 
differ basically in scale. 

9. Concluding remarks 

Wave forces and moments acting on circular cylinders of varying 

cross-sections and truncated forms are formulated by employing the 
Morison equation and related assumptions. All the formulations are 
obtained by using linear wave theory; however, besides the usual linear 
results, heuristic nonlinear formulations are presented by carrying out 
the vertical integration to the actual free surface. These nonlinear for-
mulations may be viewed as providing an upper limit for the force an 
moment values. Analytical expressions are also given for determining 
the maximum force and moment values. Sample calculations of forces 
and moments are presented for all the geometrical configurations. Lin-
early and parabolically varying diameter cases give relatively lower 
force and moment values compared to constant diameter case. Force and 
moment differences between different cases are accentuated for 
nonlinear computations. This is quite expected because orbital motions 
diminish with increasing depth and when the diameter is comparatively 
smaller near the surface the loads are smaller as well. Although subject 
to the general design considerations, the ratio of the bottom to surface 
diameter may be taken 1.5 as a reasonable value, as used in sample 
computations.  

Nomenclature 

a Wave amplitude H =2 ðmÞ
Cd Drag coefficient 
Cm Inertia (mass) coefficient 
Cp Linear wave theory phase celerity ½ðg=kÞtanh kh�1=2 

ðm=sÞ
d Immersed cylinder depth for truncated cylinders ðmÞ
D Pile diameter ðmÞ
D0 Pile diameter at still water level ðmÞ
Dd Pile diameter at bottom of truncated cylinder ðmÞ
Dh Pile diameter at seabed ðmÞ
dAp Infinitesimal projected frontal area of cylinder D dz ðm2Þ

d8 Infinitesimal displaced volume of circular structure ðπ=4ÞD2 dz ðm3Þ

F Total horizontal force acting on a pile ðkg m=s2Þ

Fd Horizontal drag force component ðkg m=s2Þ

Fi Horizontal inertia force component ðkg m=s2Þ

F
�

d Non-dimensional drag force component 

F
�

i Non-dimensional inertia force component 
Fd0 Drag force amplitude 12 ρgCdD0H2 =8 Sh 2μh ðkg m=s2Þ

Fi0 Inertia force amplitude π
4 ρgCmD2

0H =2 Ch μh ðkg m=s2Þ

g Gravitational acceleration ðm=s2Þ

h Water depth and cylinder depth for bottom-mounted cylinders ðmÞ
H Wave height ðmÞ
k Wave number 2π =L calculated from ω2 ¼ gk tanh kh ðrad=mÞ
K Keulegan-Carpenter number UT =D 
L Wavelength ðmÞ
M Total horizontal force moment about pile bottom ðkg m2=s2Þ

Md Moment of drag force component ðkg m2=s2Þ

Mi Moment of inertia force component ðkg m2=s2Þ

M
�

d Non-dimensional moment of drag force component 

M
�

i Non-dimensional moment of inertia force component 
T Wave period ðsÞ
U Horizontal fluid particle velocity component ðm=sÞ
εϵ Wave nonlinearity parameter (general) gH =C2

p 
ϵd Wave nonlinearity parameter (deep water) kH 
ϵs Wave nonlinearity parameter (shallow water) H =h 
εd Nonlinearity parameter a =d 
εh Nonlinearity parameter a =h 
μd Dispersion parameter kd 
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μh Dispersion parameter kh 
ξ Ratio of truncated cylinder depth to water depth d =h 
ω Cyclic wave frequency 2π =T ðrad=sÞ
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