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Morison’s equation is used for formulating forces and moments due to waves acting on circular cylinders of
varying cross-sections and truncated forms. First, the usual case of bottom-mounted constant-diameter circular
piles extending from seabed to free surface is revisited and then forces and moments for the truncated form are
formulated. Further, linearly and parabolically varying diameter cases are considered for both bottom-mounted
and truncated cylinders. The formulations are derived using linear wave theory; however, by adopting a heuristic
nonlinear approach integrals are evaluated from pile bottom to wave crest instead of still water level. Corre-
sponding linear formulations are obtained as special cases by simply setting the non-dimensional nonlinearity
parameters to zero. Thus, for each cylinder configuration two different force and moment formulas are presented
by integrating to actual free surface and to still water level. All the results are arranged in forms which are
practically easy to use. Finally, analytical expressions for determining maximum total force and moment values

are given and sample calculations are presented for all configuration types.

1. Introduction

Morison, Johnson, O’Brien and Schaaf (1950) introduced a simple
concept for estimating wave forces on piles. The approach has two basic
assumptions: the total wave force is expressed as a superposition of drag
and inertia forces while scattering of waves in presence of pile is
completely neglected in accord with the Froude-Krylov hypothesis. The
proposed equation then has become known briefly as the Morison
equation. The final total force is usually formulated by using the hori-
zontal component of wave orbital velocity as given by linear theory.
Nevertheless, the application is by no means limited to linear theory;
Skjelbreia et al. (1960) employed the fifth-order Stokes wave theory
while Dean (1974) gave calculations using Dean’s stream function the-
ory (1965). In this work, linear wave theory is used for the horizontal
velocity; but as a heuristic attempt to include nonlinear effects, upper
limits of integrals are set to the actual free surface or wave crest. This
point is obviously not in line with linear wave theory which is formu-
lated for infinitesimal amplitudes and all surface variables are evaluated
at the unperturbed or still water level. However, such empirical exten-
sion has its justification in the arguments that linear theory yields quite
similar results to Stokes fifth-order theory even when used beyond its
usual limits to predict the velocities above the still water level (Sarpkaya
and Isaacson, 1981, p. 299). Finally, Sarpkaya and Isaacson (1981)
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emphasize that while Morison’s equation itself is heuristic in essence it is
quite satisfactory in the drag and inertia dominated regimes and it is
unlikely that an entirely new equation will replace it.

In this work, basically two new features are considered for expanding
the practical application area of Morison’s equation. One of these con-
cerns the geometry of piles. Besides the usual circular cylinders of
constant diameter, circular cylinders of linearly and parabolically
changing diameters are considered. Piles of varying diameters and
truncated forms are becoming important especially for offshore wind
turbines, floating or installed in relatively shallow depths (Hummel and
Jenkens, 2015; Brito et al., 2015; Ross and Siew, 2015). Also considered
are cylinders not extending to the seabed, which are relevant for floating
type platforms. Another new feature of the present work concerns the
wave kinematics. Applicable range of linear wave theory is stretched
beyond the still water level by taking the upper limit of integrals to the
wave crest. Results corresponding to the standard application of taking
the upper limit of integration as the still water level are readily obtained
by setting the nonlinearity parameters to zero. All the expressions
derived are expressed in terms of non-dimensional parameters, which
once computed, may be easily used for obtaining the desired results. In
closing, a simple approach of computing wave heights for a given water
depth over a range of wave periods is described and sample computa-
tions involving all configurations are presented for inter-comparisons as
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well as providing numerical reference values.
2. Morison’s equation

The equation known briefly as Morison’s equation was proposed by
Morison et al. (1950) as a practical means of calculating wave forces on
vertical circular piles. The equation is composed of two parts, which deal
respectively with drag and inertia forces and given as (Morison et al.,
1950; Sarpkaya and Isaacson, 1981; Chakrabarti, 2001)

1
dF==pC
2/ d

U’UdA,, +p cmg dv (@)

where dF is the total infinitesimal force acting on the infinitesimal height
dz of the pile, p the fluid density, U the horizontal flow velocity, dA, =
D dz the infinitesimal projected frontal area, dV = (z/4)D? dz the infin-
itesimal displaced volume of the circular structure, C4 and C,, are the
dimensionless constant coefficients of drag and inertia (mass), respec-
tively. The main issue with Morison’s equation is the determination of
the constants C; and C,, since comparisons with experimental data and
field measurements show considerable scatter depending in principle on
Keulegan-Carpenter number K = UT/D where T is the flow period and D
the diameter. An in-depth study of the subject can be found in Gud-
mestad and Moe (1996).

The standard way of formulating the total force due to waves pro-
ceeds as follows. U is taken from linear theory, dU /dt the total accel-
eration is replaced by local acceleration U /dt as a part of linearization.
Finally, the equation is integrated from the pile bottom, say z = — h, to
the still water level z = 0. Here, the same procedure is followed except
that whenever proclaimed the pile diameter is treated as a function of
the vertical coordinate z. Also, the upper limit of the integration is set to
the wave amplitude z = a = H/2 and the linearization is carried out after
the general result is obtained.

Neglect of wave diffraction or wave scattering in the vicinity of pile
necessarily requires relative smallness of pile in comparison to waves. A
rule of thumb states that the ratio of pile diameter to incident wave-
length should be less than 1 /20 (SPM, 1984, p.7-103) for a justified use
of Morison’s equation. See for instance Kurian et al. (2013) for com-
parisons between Morison’s equation and diffraction theory.

3. Bottom mounted and truncated circular cylinders of constant
diameter

In line with the standard application of Morison’s equation (1) the
horizontal velocity is taken from linear theory as

Ux,1) = gzk_al;l %cos(kx — or) 2)
where g is the gravitational acceleration, k = 2z/L the wave number, L
the wavelength, h the water depth, H the wave height, o the cyclic wave
frequency. Linear theory dispersion relationship w? = gk tanh kh is used
to determine the wave number for a given cyclic frequency. For shorter
notation the hyperbolic cosine function cosh kh and the hyperbolic sine
function sinh kh are denoted by Ch kh and Sh kh, respectively.

The total horizontal acceleration is dU /dt = oU/dt+ UdU/ ox+ Wo
U/0z; however, following the usual linearization process dU /dt ~ dU/ ot
hence

dU _ gkH Chk(z+h)

@ =2 onm Smk—on 3)

Isaacson (1979) concluded that the above approximation would
overestimate the acceleration but be acceptable for practical
applications.

Using the expressions given for velocity U and acceleration dU /dt
and writing in general dA, = D(z) dz for the frontal area element and dv
= (n/4)D?(z) dz for the volume element in (1) and integrating over the
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pile height gives for the in-line, x = 0, force for a bottom-mounted
cylinder

cos w /h {%ﬂ [1 4 Ch 2k(z + h)]dz

1
F= EngdDon cos wt

2k
8 Sh 2kh

« (]2
sin @r x / {ﬁ} Chk(z+h) dz
J -l Do

- ngm%D(z,H

k
2 Ch kh
C))

where Dy is the pile diameter at the still water level z = 0. The above
expression of total force is obviously a straightforward adaption of
Morison’s equation to the case of vertically varying pile diameter D(z).
Since the change in diameter is gradual it is expected that the original
formulation, equation (1), would still hold good in producing realistic
results. Obviously, the true validation can only be done by measure-
ment, which is beyond the scope of the present theoretical work.

The total moment about the bottom z= —h is calculated from

1
M :Engg,DOH2 cos wt|cos wt

2kh
8 Sh 2kh

sin wt

“ 2\ [D(z) T, k
></7h<1+ ){D }[1+Ch2k(z+h)]dz PeCogDiH 5

h o
x /ih<1 +§) {I?TCh k(z+h) dz

0

(%)

Note that the moment arm (h + z) is expressed as h(1 + z/h). For trun-
cated cylinders the moment arm is changed to (d + z) = d(1 + z/d) and
the lower limit of integrals is set to — d, the submerged depth of the
cylinder.

3.1. Bottom-mounted circular cylinders of constant diameter

First, circular cylinders of constant diameter extending from seabed
to free surface are considered. Fig. 1 shows on the left a bottom-mounted
circular cylinder with immersed height h, which is equal to the water
depth. The pile diameter D(z) = Dy is constant. Integrating from z= —h
to the wave crest z=a = H/2 gives the total time-dependent force
acting on a vertical circular cylinder extending from seabed to free
surface as F = Fg|cos wt|cos wt — F; sin wt. The drag and inertia force

components are expressed as F; = FdOI:"d and F; = Fioﬁ'i where

1 2 n 2
3P8CaDoH z5gC,D*H
Fpo= 2P8Cal 0 0= 4P8EmEGT 6)
8 Sh 2y, 2Chy,
and the non-dimensional force components Ij"d and F; are

DO w Do
H|

"Ik

Fig. 1. Circular cylinders of constant diameter: bottom mounted (left) and
truncated (right).
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Fy=2u,(1+ &) + Sh2u, (1 + &) %)
F;=Shu,(1+¢) (8)

in which e, = a/h and y;,, = kh.

Similarly, the components of total moment

M = My|cos wt|cos wt — M; sin wt are expressed as My = hFpoMy and

M; = hFiOMi. The non-dimensional moment components Md and Mi are

My=py(1+ )" + (1 -+ ) Sh 2, (14 &) + [1 = Ch 20,(1 + 1)) /20,
©)]
M= (1+ &) Shy,(1+&,) +[1— Chp,(1+e,)]/u, (10)
The linearized forms of non-dimensional force and moment compo-

nents are obtained by simply setting the nonlinearity parameter ¢, to
zero.

Fa=2u, + Sh 2y, amn
Fy=Shy, (12)
My =, +Sh 2, + (1 — Ch2p,) /2, a3
M,-,:Sh;t,,+ (1 —=Chu,)/u, 14

where the additional subscript [ indicates linear expressions. Equations
(11)-(14) are in complete agreement with the expressions given in the
relevant literature; see for instance SPM (1984), p.7-111/112. These
equations are the standard ones for constant diameter piles obtained
form Morison’s general expression (1) by the use of linear wave theory.

3.2. Truncated circular cylinders of constant diameter

Fig. 1 shows on the right a truncated circular cylinder with constant
diameter Dy and penetration depth d. The integrals are now evaluated
from —d to a, and the moment arm is set to d(1 + z/d). Thus, the non-
dimensional drag and inertia force and moment components for a
truncated circular cylinder of constant diameter are

Fy =2y (1 + €4) + Sh 21, (1 + &) — Sh 2, (1 = &) s
ﬁ[:Shﬂh(lJrSh)*Shﬂh(l*f) (16)

My=p(1+€0)’ + (1+e4) Sh 2, (1 + )
= [Ch 241, (1 + €4) — Ch 2p, (1 = £)] /21, an

M= (1 +€4) Shp, (1 + &) = [Chp, (1 + 1) = Chpy, (1 = E)]/mg 18)

where ¢4 = a/d, yuy = kd, and ¢ = d/h. Note that for truncated cylinders

the dimensional moment values are My = dFdon and M; = dFoM;;
previously used h has been now replaced by the truncated cylinder depth
d. The corresponding linearized forms are

Fy=2u, + Sh2u, — Sh2u,(1 — &) 19)
F;=Sh pu, — Shu,(1- &) (20)
Mg =pt, + Sh 2, — [ Ch 2, — Ch 2p,(1 — £)) /24, (21)
[Mi:Sh”h_[Ch”h_Ch”h(l =&/ g (22)

Note that when the submerged height of the truncated pile or the
penetration depth is equal to the water depth é=d/h =1 and ¢4 = &,
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Ugq = My, the above expressions become identical with those given for
bottom-mounted cylinders in §3.1.

4. Bottom mounted and truncated circular cylinders of linearly
varying diameter

Piles with linearly varying diameters as shown in Fig. 2 are consid-
ered now. In the formulations the pile diameter at the bottom needs not
be greater than the pile diameter at the still water level but for appli-
cations this is normally the case; therefore, the figures are drawn
accordingly.

4.1. Bottom-mounted circular cylinders of linearly varying diameter

The linear variation of the pile diameter for bottom mounted cylin-
ders is formulated as D(z) = Do(1 — rpz/h) where ry, = D /Dy — 1 with Dy
denoting the diameter at the still water level and Dy, the diameter at the
seabed as shown in Fig. 2 on the left. Setting D(z) as described now in the
general force and moment formulations and performing the integrals
from z= —h to the wave crest 2= a = H/2 give for the non-dimensional
force and moment components

Fy=2u,(1+ &)1+ (1 — &,)/2) + (1 — r4e1) Sh 2, (1 + &)
= (r/2u)[ 1= Ch 2p,(1 + &,)] (23)

Fim (1= e +20 1] St (1 + &) = () [(1 ) — (1
—mér) Chpy,(1+ ¢&,)] @9

My=p, [(1 +e) +rm(1 -3¢ — 282)/3] + [(1+ &) = ru(en + &
+ 1/2/,1,21)] Sh2u, (1 +¢&,) + [(1+r,)— (1
— (1 +26,)) Ch 2p,(1 + &,)] /2, (25)

M= [(1+ &) (1 = 2r4e4) —2r(2 = 1) [py] Shop, (14 &) + ryen(en + €
+6/u;) Shp, (14 &) — {[1 =2 (1 =31 /13)] /s } Chpy(1+ &)
=2+ 3en)](ruen/my) Ch (14 e) + [(L+ ) 672 /3] [,

(26)

The linearized forms are
Fa=2u,(147,/2) + Sh2u, — (r,/21,)(1 — Ch 2p,) 27)
1:",-/:(1+2ri/ﬂi)5hyh—(2rh/uh)(1+rh—Ch,uh) (28)

Do Kﬁi\‘ DO

"Ik

Fig. 2. Circular cylinders of linearly varying diameter: bottom mounted (left)
and truncated (right).
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Mg =p,(1+1,/3) + (1 — r/2u2) Sh2u,
+[(1+r) = (1 = 1) Ch2u,)/2u, (29)

My=[1-2r,2 = r) /i) Shp, — {[1=2r (1 = 3r/p2)] /s } Chop,
+ [+ )62/
(30)
Since the cylinders are bottom mounted, the dimensional moment

values are calculated as My = hF4Mjy, etc. by using h.

Note that when the diameter at the bottom D}, is equal to the diam-
eter at the still water level Dy, that is, when the cylinder diameter is
constant r, = Dy /Dy — 1 = 0 vanishes, the above formulations reduce to
the constant diameter case given in §3.1.

A fine detail concerning only nonlinear formulations must be pointed
out. Since the linear variation of diameter continues above the still water
level the diameter becomes somewhat smaller hence integrals for
nonlinear cases give slightly lower force and moment values. A similar
situation applies to the parabolically varying cases but there the pile
diameter reaches the lowest value at the still water level and then above
this level begins gradually increasing hence in this case produces
somewhat higher force and moment values. Although a separate inte-
gration would be possible for above the still water level, such an
approach would have complicated the already complex equations
exceedingly. Therefore, considering that the error introduced to
nonlinear computations are relatively smaller, this problem is ignored.
Of course, such concerns do not apply to the linear formulations at all.

4.2. Truncated circular cylinders of linearly varying diameter

The linear variation of the pile diameter for truncated cylinders is
formulated as D(z) = Do(1 —r4z/d) where rq=D4/Dy —1 with Dy
denoting the diameter at the still water level and D, the diameter at the
bottom of the truncated cylinder as shown in Fig. 2 on the right. Setting
D(z) as described now in the general force and moment formulations and
performing integrals from z = —d to the wave crest z= a = H/ 2 give for
the non-dimensional force and moment components

Fa=2u,(1+ e)[1 +ra(1 — £4)/2] + (1 — r4e4) Sh 2u, (1 + &)
— (1 +rq) Sh2u, (1 — &) + (ra/2uy)[ Ch 2, (1 + &,) — Ch 24, (1 — £)]
31

Fi— [(1 — reed)’ + 27 /ﬂ;} Shu,(1+ &)
— [0 ) 273 3 S, (1 = &)+ (2rafua) (1 = raea) Chp (14 &)

= (2ra/ug) (1 + ra) Chopy (1 =€)
(32)

Ma=p,[(1+ €0 +ra(1 =363 = 263) /3] + [L+eu = ralea + €
+1/243)|Sh 20, (1 + &) + (ra/217) Sh 2, (1= &)

— {1 = ra(1 +2€4)]/241,} Ch 201, (1 + &) + [(1 + r4) /224] Ch 20, (1 = §)
(33

Mi = [(1 +ea)(1 = 2rgeq) = 2r4(2 — rd)/;tﬂShy/,(l +&)+ rfis,,(sd +é
+6/u3) Shp, (1 + &) +4(ra/u3) (1 + rq) Shp, (1= &) — {[1 —2r,(1
= 3ra/13)] /a YCh (1 + £) + (raga/u,) 4 — ra(2 + 3€4)] Ch p, (1 + &)
+ {4 ray + 603 /m3] [} Co (1= )
(€D)]

The linearized forms are
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Fy=2u,(1 +74/2) + Sh2u, — (1 + r,) Sh 2u,(1 — &)
+ (ra/2p,)[ Ch 2, — Ch 241, (1 = )] (35)

Fy=(1+203/u)Shp, = [(1 41" +273 /i3] Sh, (1 = &)
+ (2ra/ug)[ Chpy, — (14 ra) Chp, (1 = £)] (36)

Ma=py(1+74/3) + (1 = ra/243)Sh 2, + (ra/243) Sh 2, (1 = )
— (1 = 74) /2p14)Ch 2, + [(1 + r4) /2,)Ch 20, (1 — ) @37

M;=[1-2ry2 — ry) i3] Sh p, +4(ra/13) (1 + 1) Shp, (1 — &)
—{[1=2ra(1 = 3ra/12)] /1a} Chop,
{0 6] fuf on1 - 38)

Once more it is noted that for all truncated cylinders the moments are

calculated by the use of d as in My = dF4;Mj, etc.

If the diameter at the bottom of cylinder Dy is equal to the diameter at
the still water level Dy, that is, when the cylinder diameter is constant
ra=D4/Do — 1 = 0 vanishes, the above formulations reduce to the con-
stant diameter case given in §3.2. Further, if ¢ = d/h = 1 then ¢4 = ¢, and
Uq = My, the above expressions become identical with those given for
bottom-mounted cylinders in §3.1. Indeed, equations (31)—(34) comprise
all the formulas derived till now, (7)-(30) and (35)-(38), as special cases.
Therefore, they can be used to compute the wave forces and moments for
any previous case desired by setting the parameters appropriately.

5. Bottom mounted and truncated circular cylinders of
parabolically varying diameter

Piles with parabolically varying diameters as shown in Fig. 3 are
considered now. Once again, in the formulations the pile diameter at the
bottom need not be greater than the pile diameter at the still water level
but for applications this is normally the case; therefore, the figures are
drawn accordingly.

5.1. Bottom-mounted circular cylinders of parabolically varying diameter

The parabolic variation of the pile diameter for bottom mounted
cylinders is formulated as D(z) = Do[1 +r4(2/h)?] where r, = Dj,/Do — 1
with Dy denoting the diameter at the still water level and Dy, the diam-
eter at the seabed as shown in Fig. 3 on the left. Setting D(z) as described
now in the general force and moment formulations and performing the
integrals from z= —h to the wave crest z=a = H/2 give for the non-
dimensional force and moment components

Fo=2u,[1 +en+ri(1+€) /3] + [L+ (el +1/242)] Sh2p,(1 + &)
— [l +e&, Ch2u,(1+¢€,)/u,

(39)
Fi={ (14 red) +4(n /) [1+3ra(eF +2/u)] } Sh (1 + 1)
— A(ruen/my) [1+ra(ep +6/uz) ] Chop, (1 + £4) — 4(ra /) [1+ 14 (1
+6/u)]
(40)

Ma=p, (1 + &)’ +ri(1 + 4} + 3¢) /6]
+ [1+ e+ (14 3en) /2u; + ragq (1 + €,)] Sh2p, (1 + &) 1)
—{[(V+ru(2en + 3¢, +3/2u3)] /21, } Ch 2u, (1 + &)
+ [+ (1+3/247)] /21,
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m}
S
K

Fig. 3. Circular cylinders of parabolically varying diameter: bottom mounted (left) and truncated (right).

M= {1+, +2r[2(1 +3e,) /i3 + (1 + )] } Shp, (1 + &)
+ 17 [24(1 + Sey) /iy + 4e5(3 + 5ei) Jur + €4(1 + &,)] Shp, (1 + &)
—{[1 42 (6/u; + €n(2+ 3e1))] /1y } Chp, (14 &4)
— [e3(4 + 5e4) + 126, (2 + Se4) /1y, + 120 /443 ] (3 /1, Ch pay, (1 + &)

[0 n) #1201+ 30) /i + 1208 /| [,
(42)

The linearized forms are

Fa=2p,(1+ r/3) + (1 + ro/2u2) Sh2u, — i/, (43)

Fuy=[1+4n,(1+6n,/u2) /2] Sh = 4 /u) 1+ (14 6/12)] (44

Ma=p,(1+1,/6) + (1+1,/242)Sh 2, — [(1+3r/2447) /21,] Ch 2p,

+ (L4 (1+3/213)] /28,
(45)

My = (1+4r, /i + 247, /) Shy, — [(1+ 120/, + 12073 /1) /1, Ch g

+ [0 )+ 12004 3) 4+ 1207 ] [,
(46)

The dimensional moment values are computed by using has in My =

hF4My, etc. since the cylinders considered are bottom mounted. Note
that when the diameter at the bottom Dj, is equal to the diameter at the
still water level Dy, that is, when the cylinder diameter is constant
rhn = Dy/Dy — 1 = 0 vanishes and the above formulations reduce to the
constant diameter case given in §3.1.

5.2. Truncated circular cylinders of parabolically varying diameter

The parabolic variation of the pile diameter for bottom mounted
cylinders is formulated as D(z) = Do[1 +r4(z/d)?] where rgy = Dg/ Do— 1
with Dy denoting the diameter at the still water level and D, the diameter
at the bottom of the truncated cylinder as shown in Fig. 3 on the right.
Setting D(z) as described now in the general force and moment formu-
lations and performing the integrals from z = —hto the wave crestz = a =
H/2 give for the non-dimensional force and moment components

1242520, (1 + )
(ra€a/mq) Ch2p, (1 + &)

Fo=2p,[1+ea+ra(1+€) /3] + [1+ra(ed +
— [1+ra(1 4 1/2p3)]Sh 2p, (1 — &) —

— (ra/pq) Ch2u,(1 - &)
(47)

Fy={ (14 ragd)" +4(ra/43) [1 4 3ra(€3 +2/13)] | Shu, (1 + &)

{0 4GB 1+ 3121+ 23)]} St (1 -
—A(raea/my) [1+ra(€5 +6/u3) |Ch (1 + &) — 4(ra/ug) [1+ra(1
+6/u3)|Chp (1= 8) (“48)

Ma=py[(1+ €2 +ra(1 + e + 3¢3) /6]
+ [1+eq+raeh (1 + eq) + ra(1 + 3e4)/2u3]Sh 20, (1 + &) (49)
+ (ra /) Sh 2, (1= &) = {[(1 4 ra (264 + 3¢5 +3/203) ] /23, }
Ch 2, (1+ &)+ { [1+ra(1 +3/243)] /24, } Ch 2, (1 = £)

M= {1+ e+ 2r,[2(1 +€4) +2(1 + 3e,) /i3] } Shp, (1 + &)
+ 15 [E5(1 + £0) +4€5(3 + 5eq) /ui +24(1 + 5e4) /1y |Sh p, (1 + &)
+8(ra/ud) [1+ra(1+12/p3)]Sh p, (1 — &) — {[1 +2rq(ea(2 + 3e4)
+6/u3)]/ia} Chpa,(1+ &)
— (r3/ma) [3(4 + 5e4) + 1264(2 + 5€4) /ui + 120 /4y |Ch i, (1 + &)

{00 ) 12004 30 [ 412073 /) [} Chpy (1= 8)

(50)
The linearized forms are
ﬁd,:2ﬂd(l +rq/3) + (1 + rd/2,u§) Sh2u, — [1 +rd(l
+1/243)] Sh 2p,(1 = &) — (ra/mz) Ch 2u,(1 = &) (51)

Fu=[1+4(ra/u3) (L4 6r/43) ] Sh iy — {(1 -+ ra)? +4(ra/3) [1 +3ra(1

+2/i2)] } Sh (1= &) = 4(ra/puy) [+ 7a(1 4 6/13)] Chpy (1= &)
(52)
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My =py(1+rs/6) + (14 ra/2u3) Sh2p, + (ra/p3) Sh2pu,(1 - &) - [(1

+3ra/2u3) /2u4) Ch2p, + {1+ ra(1 +3/2u3)] /21, } Ch 2u,(1 - &)
(53)

My = (1+4ry /1% + 2472 /i) Sh, + 8(ra Ji3) [1+ 14 (1
+12/pg)] Shp (1= &) = [(1+ 12 /1 + 12073 /4ig) /1] Ch
+ { [(1 +10)* + 120 (1 + 3ry) [ + 12072 i ]/Md} Chu,(1-¢) (54)

As for all truncated cylinders the moments are calculated by the use

ofdasin My = dFdOMd, etc.

6. Maximum force and moment values

Time-dependent total force and moment values have the same
functional forms; F= Fj|cos wt|cos wt —F;sinwt and M=
Mj|cos wt|cos ot — M; sin wt. In order to determine the time corre-
sponding to a maximum or minimum, the time derivative of the function
is set to zero. Considering the expression for the force while ignoring the
absolute value sign (which can be shown not to affect the result for
maximum) gives

dF

= —2wF; cos wt sin wt — wF; cos wt
t (55)
= —w(2F, sin wt + F;)cos wt =0
which in turn requires either 2F; sin wt+F; =0 or cos wt = 0. The

second choice seems like a trivial solution; however, this is not the case
here: if the first choice fails when F; /2F; > 1, the second choice provides
the solution. Thus, if F; /2F; < 1 then

F; F?
tmax = Hm = —arcsi — = Fu,u=F L 56
%) arcsin <2Fd> "+ <4Fd> (56)

since cos?,, = 1 — F?/4F%. The above expression for Fyq, was given in
Morison et al. (1950); however, the second possibility, when F; /2F; > 1,
was not considered. If F; /2F; > 1 then
Olyay = Hm = ig = Fmtu = q:F! (57)
Note that when F; /2F; = 1 both solutions become identical; specif-
ically, 6,, in (56) becomes —z/2 and Fyq = Fscos*(—n/2) + Ff/ZFd =F
since 2F; = F;. For obtaining M., F; and F, are replaced by M; and M, in
the above formulations.

7. A simple approach of estimating wave heights

Estimation of wave heights in a given region is essential for
computing the wave forces and moments acting on a pile. A very simple
but realistic approach, based on a given water depth of a region and a
range of periods is suggested. First, a general nonlinearity parameter €
valid for arbitrary relative depths is recalled (Beji, 1995):

_¢H

= (58)

€

where g is the gravitational acceleration, H the wave height, and C, the

linear theory phase celerity C, = [(g/k)tanh kh]'/2. This nonlinearity
parameter embodies both the shallow water parameter ¢, = H/h when
Cﬁ = gh and deep water parameter ¢; = kH when Cs = g/ k as special
cases; therefore, it has the advantage of applicability over the entire
relative water depths. Moreover, setting € to the constant value 0.88
results in Miche’s wave breaking criterion (Miche, 1951).

For a given water depth it is possible to proceed by selecting a wide
range of possible incident wave periods and setting € to a meaningful
constant value to calculate corresponding wave heights according to the
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general nonlinearity parameter given in (58). Use of the breaking cri-
terion constant 0.88 would result in extremely large wave heights
therefore a simple design criterion for the North Sea set by DnV (Det
Norske Veritas) back in 1974 is referred to. Accordingly, for deep water
waves a 100 ft ~ 30.5 m wave height with a period of 15 s was adopted
as a 100-year wave or 100-year return interval wave (Sarpkaya and
Isaacson, 1981, p. 293). The steepness of this particular wave can be
computed from e;=kH with deep water wave number
k= w?/g = 0.01788 rad/m corresponding to T = 15 s period hence ¢; =
0.55. Thus, here wave heights are determined from the general
nonlinearity parameter as H = ecg /g by setting ¢ = 0.55 and computing
C, according to a given water depth and period. Fig. 4 depicts the period
versus wave height curves for different water depths ranging from h =
10 m to h—>oo (deep water).

Wave height curves for finite water depths show initially a steep
increase with increasing period but then assume a horizontal character
for larger periods as it asymptotically approaches to the shallow water
wave height limit according to ¢, = H/h = 0.55 so that H = 0.55-h. On
the other hand, deep water case exhibits a completely different character
and wave heights increase unboundedly with increasing period. This is
in accord with unbounded increase of wavelength with increasing
period. More specifically, for deep water waves ¢q = kH and Lo = gT?/
27 therefore H = ¢4¢T? /472 hence the wave height is proportional to the
square of wave period. For € = 0.55 and T = 15 s the wave height is
H=0.136T2? ~ 30.5 m as initially selected.

It must be emphasized that for nonlinear waves, as for the sample
case of e = 0.55, the linear acceleration field given by equation (3) does
not apply strictly. Its use for highly nonlinear waves should be viewed as
a part of heuristic approach employed here for nonlinear computations.

8. Sample calculations of wave forces and moments

Sample calculations of wave forces and moments are now presented
for the wave height versus period range corresponding to the water
depth h =10 m in Fig. 4. The pile diameter for constant cross-section
case is taken as Dy = Dy = 3.5 m. For the cases of linearly and para-
bolically varying piles the diameters at the surface and bottom are
determined such that the submerged volumes are equal to the constant-
diameter case. In order to determine diameters a definite ratio of the
bottom to surface diameter must be selected; this ratio is set to
Dy, /Do = Dyg/Dy = 1.5 for both bottom-mounted and truncated cylinders
of linearly and parabolically varying diameters. For all the calculations
C4=0.7 and C, =1.6 are used as typical representative values

30
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Fig. 4. Wave heights computed by setting € = 0.55 for a range of wave periods
and water depths.
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(Gudmestad and Moe, 1996; SPM, 1984; Sarpkaya and Isaacson, 1981).
The drag and inertia coefficients are by no means fixed hence the
selected values should only be viewed as acceptable choices. Finally,
maximum force and moment values are determined according to
equations (56) and (57).

8.1. Bottom mounted cylinders

Setting r, = Dy /Do — 1 = 0.5 for bottom-mounted piles and equating
the submerged volumes give for the surface and bottom diameters
(rounded off) Dy = 2.8 m, D, = 4.2m, and Dy = 3.0m, D, = 45m,
respectively for linearly and parabolically varying piles. The submerged
volume for all the cases is approximately 96.2 m®.

Fig. 5 shows maximum force curves within T=1 — 15 s period range
according to linear and nonlinear computations for the constant, para-
bolically varying, and linearly varying diameter cases. The upper three
curves are nonlinear and lower three curves are linear computations. For
the nonlinear computations the maximum force values corresponding to
the linearly varying pile diameter case are the lowest among all but this
must be observed with care, giving allowance for further reduction in pile
diameter above the still water level as pointed out at the end of §4.1 in some
detail. Nevertheless, for nonlinear computations it may be safely stated
that constant diameter case is subjected to highest wave loads compared to
any other within the entire wave period range. Linear calculations on the
other hand indicate clearly that linearly and parabolically varying diam-
eter cases are virtually the same and only slightly lower than the constant
diameter case. Overall, the nonlinear force values are approximately 30%—
40% greater than their linear counterparts over the range of periods but
this ratio is quite realistic when compared with 80% greater value reported
for cnoidal theory (Sarpkaya and Isaacson, 1981, p. 456). However, once
more it must be emphasized that the nonlinear computations are hybrid in
the sense that linear theory formulation for the horizontal velocity is used
while the vertical integration for each force component is carried out to the
wave amplitude value above the still water level hence the results should
be viewed with caution.

Fig. 6 shows the corresponding moment values about the bottom of
the pile or the mud line for bottom mounted piles. The general trend of
the curves is quite similar to the force curves but the differences with the
constant diameter case are accentuated. It is recalled that the piles are all
bottom mounted at d= h = 10 m water depth and that the underwater
submerged volume of each pile is the same as the constant diameter
case.
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Fig. 5. Variations of maximum horizontal force for bottom-mounted piles due
to wave heights computed for ¢ = 0.55 and h =10 m water depth within
T=1-15s period range. Upper three curves are nonlinear and lower three
curves are linear computations. Black solid curves indicate constant, red circle
curves parabolically varying, and finally blue triangle curves linearly varying
diameter cases. (For interpretation of the references to colour in this figure
legend, the reader is referred to the Web version of this article.)
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Fig. 6. Variations of wave period versus maximum moment about the bottom
of the bottom-mounted pile. All the parameters are the same as used for Fig. 5.
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Fig. 7. Variations of maximum horizontal force for truncated piles with
d=h/2 = 5m due to wave heights computed for ¢ = 0.55 and h = 10 m water
depth within T=1 — 15 s period range. Upper three curves are nonlinear and
lower three curves are linear computations. Black solid curves indicate con-
stant, red circle curves parabolically varying, and finally blue triangle curves
linearly varying diameter cases. (For interpretation of the references to colour
in this figure legend, the reader is referred to the Web version of this article.)
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Fig. 8. Variations of wave period versus maximum moment about the bottom
of the truncated pile. All the parameters are the same as used for Fig. 7.
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8.2. Truncated cylinders

The force and moment computations presented for bottom-mounted
cylinders are now repeated for truncated cylinders withd=h/ 2 =5m
andry=D4/Dy — 1 = 0.5 again. The submerged volume for all the cases
is approximately 48.1 m® —half the bottom-mounted case so that the
surface and bottom diameters are again Dy = 2.8 m, D, = 4.2 m, and
Dy = 3.0m, D, = 4.5m, respectively for linearly and parabolically
varying piles.

Fig. 7 may be viewed as the counterpart of Fig. 5 for truncated cyl-
inders. The overall characteristics of the curves in Figs. 5 and 7 are quite
similar the only difference being in the scale or the range of forces.
Forces acting on truncated cylinders are approximately 40% lower than
those of bottom-mounted cylinders. Since orbital motions diminish
exponentially with depth this reduction in force is less than the trun-
cation depth of 50% . Bottom moment variations of truncated cylinders
given in Fig. 8 is likewise the counterpart of Fig. 6 and the two figures
differ basically in scale.

9. Concluding remarks

Wave forces and moments acting on circular cylinders of varying

Ocean Engineering 187 (2019) 106156

cross-sections and truncated forms are formulated by employing the
Morison equation and related assumptions. All the formulations are
obtained by using linear wave theory; however, besides the usual linear
results, heuristic nonlinear formulations are presented by carrying out
the vertical integration to the actual free surface. These nonlinear for-
mulations may be viewed as providing an upper limit for the force an
moment values. Analytical expressions are also given for determining
the maximum force and moment values. Sample calculations of forces
and moments are presented for all the geometrical configurations. Lin-
early and parabolically varying diameter cases give relatively lower
force and moment values compared to constant diameter case. Force and
moment differences between different cases are accentuated for
nonlinear computations. This is quite expected because orbital motions
diminish with increasing depth and when the diameter is comparatively
smaller near the surface the loads are smaller as well. Although subject
to the general design considerations, the ratio of the bottom to surface
diameter may be taken 1.5 as a reasonable value, as used in sample
computations.

Nomenclature

a Wave amplitude H /2 (m)

Cq Drag coefficient

Cn Inertia (mass) coefficient

(o Linear wave theory phase celerity [(g/k)tanh kh]'/? (m/s)
d Immersed cylinder depth for truncated cylinders (m)

D Pile diameter (m)

Dy Pile diameter at still water level (m)

Dy Pile diameter at bottom of truncated cylinder (m)

Dy, Pile diameter at seabed (m)

dA, Infinitesimal projected frontal area of cylinder D dz (m?)
av Infinitesimal displaced volume of circular structure (z/4)D? dz (m?)
F Total horizontal force acting on a pile (kg m/s?)

Fq4 Horizontal drag force component (kg m/s?)
Horizontal inertia force component (kg m/s?)

Non-dimensional drag force component

Non-dimensional inertia force component

Drag force amplitude 1 pgCsDoH? /8 Sh 2y;, (kg m/s?)
Inertia force amplitude % pgCmDZH /2 Ch iy, (kg m/s?)
Gravitational acceleration (m/s?)

Wave height (m)

Wave number 27 /L calculated from w? = gk tanh kh (rad/m)
Keulegan-Carpenter number UT /D

Wavelength (m)

Total horizontal force moment about pile bottom (kg m?/s?)
Moment of drag force component (kg m?/s?)

Moment of inertia force component (kg m?/s?)

Non-dimensional moment of drag force component

Non-dimensional moment of inertia force component
Wave period (s)
Horizontal fluid particle velocity component (m/s)

Q'ﬂg\n‘gwgn‘gghmwmz-oqgjgjm‘g‘m

€€ Wave nonlinearity parameter (general) gH / Cg

€d Wave nonlinearity parameter (deep water) kH

€5 Wave nonlinearity parameter (shallow water) H /h
&4 Nonlinearity parameter a /d

€n Nonlinearity parameter a /h

Hq Dispersion parameter kd

Water depth and cylinder depth for bottom-mounted cylinders (m)
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Uy Dispersion parameter kh
I3 Ratio of truncated cylinder depth to water depth d /h
® Cyclic wave frequency 2z /T (rad/s)

References

Beji, S., 1995. Note on a nonlinearity parameter of surface waves. Coast Eng. 25, 81-85.

Brito, J.H., Quevedo, E., Llinds, O., 2015. Multi-use of offshore platforms for the future
society. J. Ocean Technol. 10 (4), 11, 10.

Chakrabarti, S.K., 2001. Hydrodynamics of Offshore Structures. WIT Press,
Southampton, U. K.

Dean, R.G., 1965. Stream function representation of nonlinear ocean waves. J. Geophys.
Res. 70 (18).

Dean, R.G., 1974. Evaluation and Development of Water Wave Theories for Engineering
Application. U. S. Army Coastal Engineering Research Center, Vol. Nos. 008-022-
00083-6 and 008-022-00084-6. Government Printing Office, Washington, D. C., U. S.

Gudmestad, O.T., Moe, G., 1996. Hydrodynamic coefficients for calculation of
hydrodynamics loads on offshore truss structures. Mar. Struct. 9, 745-758.

Hummel, N., Jenkens, M., 2015. Floating multiple wind turbine platforms. J. Ocean
Technol. 10 (4), 1-10.

Ocean Engineering 187 (2019) 106156

Isaacson, M., 1979. Nonlinear inertia forces on bodies. J. Waterway, Port, Coastal, Ocean
Eng., ASCE 213-227. WW3.

Kurian, V.J., Ng, C.Y., Liew, M.S., 2013. Dynamic responses of truss spar due to wave
actions. Res. J. Appl. Sci. Eng. Technol. 5 (3), 812-818.

Miche, R., 1951. Le pouvoir reflechissant des ouvrages maritime exposs laction de la
houle. Ann. Ponts Chausses 121, 285-319.

Morison, J.R., O'Brien, M.P., Johnson, J.W., Schaaf, S.A., 1950. The force exerted by
surface waves on piles. Pet. Trans., AIME 189, 149-154.

Ross, C.T.F., Siew, T.Y., 2015. Floating energy islands. J. Ocean Technol. 10 (4), 45-52.

Sarpkaya, T., Isaacson, M., 1981. Mechanics of Wave Forces on Offshore Structures. Van
Nostrand Reinhold Company, New York, U. S.

Skjelbreia, L., et al., 1960. Loading on Cylindrical Pilings Due to the Action of Ocean
Waves. Contract NBy-3196, 4 volumes. U. S. Naval Civil Engineering Laboratory.

Shore Protection Manual, 1984. Costal Engineering Research Center, vols. I-II.
Department of the Army, U. S. Army Corps of Engineers, Washington, D. C., U. S.


http://refhub.elsevier.com/S0029-8018(19)30338-5/sref1
http://refhub.elsevier.com/S0029-8018(19)30338-5/sref2
http://refhub.elsevier.com/S0029-8018(19)30338-5/sref2
http://refhub.elsevier.com/S0029-8018(19)30338-5/sref3
http://refhub.elsevier.com/S0029-8018(19)30338-5/sref3
http://refhub.elsevier.com/S0029-8018(19)30338-5/sref4
http://refhub.elsevier.com/S0029-8018(19)30338-5/sref4
http://refhub.elsevier.com/S0029-8018(19)30338-5/sref5
http://refhub.elsevier.com/S0029-8018(19)30338-5/sref5
http://refhub.elsevier.com/S0029-8018(19)30338-5/sref5
http://refhub.elsevier.com/S0029-8018(19)30338-5/sref6
http://refhub.elsevier.com/S0029-8018(19)30338-5/sref6
http://refhub.elsevier.com/S0029-8018(19)30338-5/sref7
http://refhub.elsevier.com/S0029-8018(19)30338-5/sref7
http://refhub.elsevier.com/S0029-8018(19)30338-5/sref8
http://refhub.elsevier.com/S0029-8018(19)30338-5/sref8
http://refhub.elsevier.com/S0029-8018(19)30338-5/sref9
http://refhub.elsevier.com/S0029-8018(19)30338-5/sref9
http://refhub.elsevier.com/S0029-8018(19)30338-5/sref10
http://refhub.elsevier.com/S0029-8018(19)30338-5/sref10
http://refhub.elsevier.com/S0029-8018(19)30338-5/sref11
http://refhub.elsevier.com/S0029-8018(19)30338-5/sref11
http://refhub.elsevier.com/S0029-8018(19)30338-5/sref12
http://refhub.elsevier.com/S0029-8018(19)30338-5/sref13
http://refhub.elsevier.com/S0029-8018(19)30338-5/sref13
http://refhub.elsevier.com/S0029-8018(19)30338-5/sref14
http://refhub.elsevier.com/S0029-8018(19)30338-5/sref14
http://refhub.elsevier.com/S0029-8018(19)30338-5/sref15
http://refhub.elsevier.com/S0029-8018(19)30338-5/sref15

	Applications of Morison’s equation to circular cylinders of varying cross-sections and truncated forms
	1 Introduction
	2 Morison’s equation
	3 Bottom mounted and truncated circular cylinders of constant diameter
	3.1 Bottom-mounted circular cylinders of constant diameter
	3.2 Truncated circular cylinders of constant diameter

	4 Bottom mounted and truncated circular cylinders of linearly varying diameter
	4.1 Bottom-mounted circular cylinders of linearly varying diameter
	4.2 Truncated circular cylinders of linearly varying diameter

	5 Bottom mounted and truncated circular cylinders of parabolically varying diameter
	5.1 Bottom-mounted circular cylinders of parabolically varying diameter
	5.2 Truncated circular cylinders of parabolically varying diameter

	6 Maximum force and moment values
	7 A simple approach of estimating wave heights
	8 Sample calculations of wave forces and moments
	8.1 Bottom mounted cylinders
	8.2 Truncated cylinders

	9 Concluding remarks
	Nomenclature
	References


