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ABSTRACT

Variations of raw spectral estimates of ocean waves with quite different sea states are
examined for confirming their fitness to theoretical chi-square distribution with two degrees
of freedom. A hypothetical numerical experiment is devised and histograms of spectral
variability for artificially produced initial wave spectrum of constant shape undergoing non-
linear transformations are computed and compared with the chi-square distribution. As the
nonlinear energy transfer among wave components develops, the histograms of spectral
variability, initially constant, evolve to the exponentially decaying chi-square form. Once the
variability distribution attains the exponential form it remains so regardless of the change in
wave field characteristics, as for waves becoming linear by propagating into deeper regions.
Irreversible nonlinear wave transformations not only redistribute the spectral energy broadly
but also do it by imparting a variability to spectral components which accords with the chi-
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square distribution, indicating true randomness.

1. Introduction

Variations in spectral representations of different seg-
ments of a given wave record are usually smoothed
out by combined application of segment and fre-
quency averaging. Resulting spectral forms do look
quite smooth; however, any possible concern which
might arise from sharp variations in individual raw
spectra is likewise washed out. Apparently, Donelan
and Pierson (1983) were the first to question the
reliability of main wave parameters obtained from
the smoothed spectral estimates and examined the
problem from various aspects. Uncertainties due to
spectral variability in practically required quantities
such as significant wave height and peak period,
were estimated. An important verification was that
the spectral variability followed the chi-square distri-
bution. The chi-square distribution, introduced by
Pearson (1900), measures the goodness of fit of any
given distribution to random variables. In other
words, it may be interpreted as an indicator of true
randomness.

On the other hand, a related subject; namely, sam-
pling variability effects, or statistical uncertainty aris-
ing from limited data has also received some
attention (see, for instance, Forristall et al. 1996;
Hagen 2007; Bitner-Gregersen and Magnusson 2014).

Beji and Nadaoka (1998) examined the spectral
variations and their relevance to wave force estima-
tions. The main purpose of the work was to analyze
the variability of wave forces acting on a sea structure.
Also, some interesting aspects of nonlinear energy
exchange among spectral components were reported

as a side product. The present work revisits Beji and
Nadaoka (1998), while placing a strong emphasize on
a possible connection between nonlinear wave
energy exchanges and randomness.

The first part of this study contains analysis of field
data of Nakamura and Katoh (1992) with respect to
the variability of raw spectral estimates and the fitness
of this variability to the chi-square distribution. Data
representing characteristically different sea states are
selected especially to demonstrate that the fitness of
spectral variability to the chi-square distribution is
independent of wave characteristics. This observation
also implies that the lack of conformity to the
Gaussian distribution does not affect the agreement
with the chi-square distribution.

The second part of the work devises a numerical
experiment involving simulation of nonlinear wave
transformations over a parabolic hump. Wave para-
meters are adjusted such that growth and strengthen-
ing of bound waves are promoted in the shoaling
region. As bound waves gain strength the energy
exchange among different wave components increase
and take place according to phase mismatch values
which diminish in shallow waters (Madsen and
Serensen 1993). In turn, phase mismatch controlled
rapid energy exchanges among wave components
give rise to sharp differences in their energy contents.
For a wave field with unvarying initial spectral shape,
these fluctuations spread over the entire frequency
band and cause considerable variations in raw spec-
tral estimates. With sufficient energy exchange,
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histograms of spectral variations are observed to
approach the chi-square distribution.

The study then concludes that nonlinear energy
exchanges among wave components impart
a spectral variability in accord with the chi-square
distribution, which indicates a truly random process.

2. Spectral variability histograms of field
measurements

Nakamura and Katoh (1992) conducted field obser-
vations of waves at the Hazaki Oceanographical
Research Facility, Kashima, Japan. The field obser-
vations took place at a beach facing the Pacific
Ocean. Seven out of 10 ultrasonic wave gauges
were installed on the 427 m-long pier while the
remaining three were deployed at water depths of
9 m (Station 8), 14 m (Station 9), and 24 m (Station
10), located at 1300 m, 2100 m, and 3200 m from
the shoreline. Figure 1 shows a schematic view of
the beach profile and the locations of Stations 5-
10. Two separate groups of measurements were
done; the first from February 25 to March 1,
1989, and the second from October 5 to 9, 1989.
Here, the data from the first group of measure-
ments are utilized.

In the first measurement group during the first
recording on February 25, 1989, the sea state was
relatively calm with significant wave height H, =
1.5m and period T; = 4.8s at the farthest offshore
station (Station 10). On February 26, 1989 an atmo-
spheric depression passed nearby the measurement
location and created a high sea state with swell. Thus,
in the aftermath of the storm, the records on
February 28, 1989 revealed approximately H; =2.2m
and T; = 12.4 s for Station 10. While waves recorded
at Stations 5-7 were either breaking or broken, waves
observed at Stations 8-10, were generally unaffected
by depth-induced breaking.
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The data of February 25 and 28, 1989 are used for
examining the spectral variations of the field data. The
first of these represent relatively mild sea conditions
while the second one is typically a swell data recorded
after a storm. These characteristically different data
sets are especially selected so that the effects of
these differences, if any, on the spectral variability
could be observed.

Computations of spectral variability follow
exactly the method outlined in Donelan and
Pierson (1983); only the numerical values (e.g. the
running averages, number of segments, etc.) differ.
For each station, data were first segmented into
M =12 groups of 1024 points and Fourier trans-
formed. From 512 unique Fourier pairs, the first
N =256 components, which included the fre-
quency range 0.0 — 1.0 Hz, were considered ade-
guate to contain most wave energy and therefore
the computations for spectral variations were done
using the first 256 transformed pairs.

For each set comprising the Fourier components a,
and b, for n =1,...,N, the Fourier amplitudes C> =
1(a% + b2) were frequency smoothed by a five-point
running average 2L + 1 =5:

1 n+L

2 2
Cn =505 2 i Q
i=n—L
where m = 1,... ;M indicates the segment number.

Using the frequency smoothed values, segment aver-
aging was performed for M = 12:

. 1M
G-15a, @
m=1

X

which, in turn, are used to compute the spectral
estimates S, = C2/Af with 2x5x12=120
degrees of freedom. Here, Af = 1/At, and At =0.5
s the sampling interval. It must be emphasized
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Figure 1. Schematic view of beach profile and measurement stations 5-10 of Nakamura and Katoh (1992).
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that S, is only an estimate of the true spectrum
with definite uncertainty.

For a Gaussian process, the 90% confidence level
for the estimated spectral variance with 120 degrees
of freedom is computed as (Bendat and Piersol
1971, 114)

12052
X %20;0.95

<S,<

12052
P( n

. ) =0.90 3)
X120.0.05

in which, for simplicity, DOF = 120 is used instead of
DOF — 1 = 119. Substituting X%ZO;OQS = 95¢701X$20;0.05 =
146.57 gives

20 p (Cl)

P(0.8252< S, < 1.2552) = 0.90. 4)

Accordingly, the true spectrum is known to within + 25%
or a range of 18% + 25% = 43% at the 90% confidence
level.

Figure 2(a) is a raw spectral estimate C,z, /Af based on
FFT of a single segment with 1024 data points for the
measurement of February 28, 1989 at Station 10. Figure 2
(b) is the running and segment averaged spectral esti-
mate S, = C2/Af for the same measurement. The 90%
confidence limits are indicated by dash-dot lines.
Comparing Figure 2(a) with 2(b) quite clearly reveals the
appreciable variations between a single realization and

20 p (b)
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Figure 2. (a) Raw spectral estimate for a single data segment with 2 DOF. (b) Spectral estimate and 90% confidence limits (dash-
dot lines) for 12 segment averaging and five-point frequency smoothing with 120 DOF. February 28, 1989 data.
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Figure 3. Left column: the smoothed average spectral estimates with 120 DOF. Right column: Histograms of the ratio, r, of raw
FFT spectral estimates to the smoothed average spectral estimates for the class interval 0.05. The solid line is the theoretical
exp(—r) curve. February 25, 1989 data.



smoothed and averaged spectrum. Hypothetically, these
variations may be quantified by the random variable
r= Cﬁ /SnAf. However, since the true spectrum S, is not

known, as an acceptable approximation, the estimate S,
computed by five-point running average over frequency
and an average of 12 segments of available data may be

used. Thus, the random variable r is redefined as Cﬁ/gnAf
and used to establish histograms for testing randomness
of the spectral variations (Donelan and Pierson 1983).
Theoretically, r is expected to be distributed according
to exp(—r), which is the chi-square distribution with two
degrees of freedom.

Calculations were carried out for the data of 25
and February 28, 1989 using 12 segments with 256
pairs of Fourier components encompassing the fre-
quency range 0.0 — 1.0 Hz and resulting in 3072
different r values. Strictly speaking, near zero values

of S, should have been excluded to avoid numerical
errors; however, no problems were run into and

therefore all S, values were used. Spectral estimates
are given in Figure 3(a,c) while corresponding his-
tograms for the 3072 values of r for a class interval
0.05 wide are shown in Figure 3(b,d) over the range
0<r<5. Each histogram has been normalized by its
value in the first interval (0.00 — 0.05). Figure 4(a—d)
show the same computations for the data of
February 28, 1989.

Differences in sea states of February 25 and 28,
1989 are obvious from the distinctly different spectral
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characteristics, revealed prominently in the energy
content and frequency range of waves depicted in
Figures 3 and 4. Despite these remarkable dissimila-
rities in spectral forms, the histograms of spectral
variability are hardly different from each other. The
only exception is Figure 4(d), where the wave energy
is greatly consumed by breaking as observed from
Figure 4(c). Nevertheless, the histograms are generally
in good accord with the theoretical exp(—r) curve,
implying that randomness of a natural sea state is not
affected by its defining characteristics such as mean
wave height and period. This preliminary investiga-
tion of the random nature of different sea states and
their quantitative identification by the chi-square dis-
tribution serves as a basis to carry out similar calcula-
tions for artificially produced random wave
transformations.

3. A numerical simulation for a hypothetical
case

The fitness of spectral variations to the exponential chi-
square distribution is regarded as a measure of random-
ness of the spectral variations. For wave fields with differ-
ent wave characteristics, relatively linear waves of
February 25, 1989 data versus highly nonlinear waves of
February 28, 1989 data, the fitness of spectral variations to
the exponential form is confirmed. This natural property
of sea waves, which is basically independent of their

(b)

Station 10

r

Figure 4. Left column: the smoothed average spectral estimates with 120 DOF. Right column: Histograms of the ratio, r, of raw
FFT spectral estimates to the smoothed average spectral estimates for the class interval 0.05. The solid line is the theoretical

exp(—r) curve. February 28, 1989 data.
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Figure 5. Bathymetry for hypothetical numerical experiment and locations of monitoring stations 1-5.

characteristics, is now examined for artificially generated
waves as an attempt to disclose its source.

A hypothetical numerical experiment is devised for
a unidirectional random wave field propagating over
a parabolic shoal. The computational domain is
5000 m long and the water depth at the beginning of
the domain is 30 m, which reduces to 5 m in the middle
of the domain and then increases to 30 m again as
shown in Figure 5. An approximate average slope as
computed from (30 — 5)/2500 = 1/100, which is quite
gentle, may be attributed to each half of the domain. For
monitoring the evolution of the wave spectra and spec-
tral variations, five stations are considered. Station 1 and
Station 5 are placed, respectively, at the beginning 0 m
and end 5000 m of the domain while Stations 2-4 are
located, respectively, at 750m, 1500 m, and 2500 m
from the beginning of the domain.

Incident wave field in the deep region is assumed to be
a Bretshneider-type spectrum (Bretschneider 1959),
which is defined in terms of the significant wave height
Hs and peak period T, as

5H2 1 5/0f\*
S(f):@wfp)sexpl_i(ﬁ ] ®

where f, =1/T, and f is the varying frequency. For
promoting second-order shallow water (long wave) inter-
actions over the hump the peak wave period is taken as
T, = 10ssothath/L, ~ 1/15 over the top of the bar. To
decide for the incident significant wave height,
a generalized wave non-linearity parameter (Beji 1995) is
employed

gH
£E="= (6)
G
where g is the gravitational acceleration, H the wave
height, and C, the linear theory phase velocity. Note
that this non-linearity parameter embodies the shallow
C; =gh, e =H/h and deep water Cj =g/k, € =kH

cases as limiting values therefore has the advantage of

applicability over the entire range of relative water
depths. Further, setting € to a definite maximum value
0.88 results in Miche’s wave breaking criterion (Miche
1951).

The incident significant wave height is determined by
ensuring a moderately energetic incident wave field
while avoiding breaking in the shallowest region over
top of the shoal. Thus, the non-linearity parameter is set
to a relatively moderate value € = 0.1 at the beginning
of the domain so that for h = 30 m water depth the
phase velocity being C, = 13.7 m/s, from Equation (6)
the incident significant wave height is calculated as
H; = 1.9m. From the conservation of energy flux the
significant wave height over top of the shoal ath = 5m
water depth is estimated as H; = 2.3 m and the phase
velocity C, =6.8m/s so that €= gHS/Cf, ~ 0.5, an
appreciable value. Wave heights computed using the
spectra (Hs; = 4,/mg) obtained from the nonlinear
numerical simulation confirm the wave heights esti-
mated from the energy flux concept. It must be empha-
sized that as various similar numerical experiments
revealed, neither the devised bathymetry nor the wave
parameters are unique to obtain the general results that
follow; the crucial point is to arrange a case where non-
linear wave evolutions take place.

For numerical simulations, a generalized KdV-
type equation valid for uneven water depths is
employed (Beji 2016),

Gttt @), - v,
(1+8) ., 1, (15 + 32B)
- Th Cxxr + ZCh hxc - TChthxx
5(1
- %hhxor —0

(7)

where ( is the free surface displacement, h the water

depth, C = 4/gh the non-dispersive shallow water
wave celerity and 3 a nondimensional dispersion



parameter. Subscripts x and t indicate partial differ-
entiation with respect to space and time, respectively.
Equation (7) embodies all the known KdV-type equa-
tions as special cases. For constant depth, setting 3 =
—1 results in the original Korteweg and de Vries
(1895) equation while 8 = —1/2 gives the so-called
regularized KdV equation of Benjamin, Bona, and
Mahony (1972). On the other hand, 8 = —1/20 pro-
duces a wave equation with dispersion relationship
corresponding to the [2/2] Padé approximant of the
exact dispersion relation. Finally, for § = 0 the linear
shoaling characteristics of the equation are in exact
agreement with those determined from the constancy
of energy flux.

Setting 3 = 0, Equation (7) was solved numerically
by spectral method as described in Beji (2016).
Accordingly, spectral amplitudes at discrete frequen-
cies were introduced at the incident boundary
(Station 1) and computations were carried out in
marching-forward manner till the desired last point
(Station 5). Spectral method has the advantage of not
requiring any outgoing boundary condition.

The incident wave field was introduced as
a Bretshneider-type spectrum with 256 Fourier pairs
with Af = f./256 = 1.953 x 1073Hz, where the cutoff
frequency f. was set to 6f, = 6/T), f, being the peak
frequency of the spectrum. Twelve realizations with
constant spectral shape but different random phase
assignments were performed. Frequency smoothing
was done by five-point running average while seg-
ment averaging was performed with 12 segments.
Thus, the statistical values given in the previous sec-
tion for measurements apply to the analysis of numer-
ical simulations as well. Use of different running-
average points and realizations has been confirmed
to cause no appreciable effect on the overall results.
For instance, a computation with seven-point running
average and 16 realizations gave only relatively more
smoothed spectra due to higher frequency averaging
but basically the same histograms.

In Figure 6, on the left column, the computed spectra
obtained after frequency smoothing and ensemble
averaging are shown at the locations Om, 750 m,
1500 m, 2500 m, and 5000 m which, respectively, corre-
spond to the water depths 30m, 17.25m, 9m, 5m, and
30 m. The corresponding spectral variability histograms
are shown on the right column.

Since spectral heights for all realizations at Station
1 are purposely imposed as constant, Figure 6(a), the
corresponding variability histogram in Figure 6(b) has
a single spike at r=1. As the waves travel over
shallower depths, increasing non-linearity begins
slowly manifesting itself as observed from the not-
quite-smooth form of the spectrum at Station 2,
Figure 6(c). The spectral variability is initiated but its
appearance is obviously very different from the
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theoretical chi-square distribution. Wave spectrum at
Station 3 shows obvious signs of non-linearity with
increased energy at lower and upper frequency
regions, Figure 6(e), while the spectral variability is
appreciably broader and adjusting itself to the chi-
square form, Figure 6(f). Station 4, being the shallow-
est station with 1/6th of the initial water depth, exhi-
bits a spectrum with broadband energy distribution,
Figure 6(g), and the spectral variability histogram has
attained a distribution which follows the theoretical
chi-square curve quite closely, Figure 6(h). Farther at
Station 5, waves are in relatively deep water again and
their non-linearity is quite diminished as it is obvious
from the area under the spectrum, Figure 6(i).
However, the nonlinear energy transfer over the shal-
low region has accomplished the redistribution of
energy over the entire band of the spectrum and
the spectrum is drastically different from its former
shape in Figure 6(a). Finally, the spectral variability,
being randomized by nonlinear energy exchanges
and having attained a chi-square form, maintains its
chi-square distribution even in deeper waters where
waves become linear again, Figure 6(j).

This entire process appears to be quite in line with
Hasselmann’s long-standing arguments concerning
nonlinear irreversible energy transfer due to nonlinear
near-resonant interactions of deep water waves
(Hasselmann 1962, 1963a, 1963b). The corresponding
process for shallow water waves, as applicable to the
present case, has been explained in detail quite
clearly in Madsen and Sgrensen (1993). Compared to
the third-order deep water interactions (four wave
components) the second-order shallow water interac-
tions (three wave components) are stronger and the
evolution of the wave field is accomplished at a faster
rate in shorter distances: Station 4 is less than 25
mean wavelengths from Station 1 and for a similar
experimental case of wave propagation over a bar
(Beji and Battjes 1993), the main energy exchange
takes place within three mean wavelengths for rela-
tively long random waves. Evolutions of spectral
shape clearly show the “irreversible tendency to
spread the wave energy evenly over all wavenum-
bers”, quoting Hasselmann (1967) verbatim. Besides
that the spectral variability histograms reveal the ran-
domizing nature of this energy distribution mechan-
ism. Energy distribution progress takes place in such
a fashion that the spectral variability eventually
attains a chi-square form and retains this property
even after the wave field becomes linear as observed
for Station 5, which is especially designated to be in
deep water. The results obtained from the field data
of February 25, 1989 (mostly linear) and February 28,
1989 (mostly nonlinear) are parallel in the sense that
the chi-square-type-spectral-variability is independent
of wave field characteristics.
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Figure 6. Nonlinear computations. Left column: the smoothed average spectral estimates with 120 DOF. Right column:
Histograms of the ratio, r, of raw FFT spectral estimates to the smoothed average spectral estimates for the class interval 0.05.

The solid line is the theoretical exp(—r) curve.

On the other hand, when the numerical experi-
ment is carried out using the linearized version of
Equation (7) with (CZ)X term dismissed, the results
look quite different as shown in Figure 7(a—f). The
spectral shape at the end of the domain, Station 5,
is now exactly the same as the incident wave
spectrum at Station 1. The form of wave spectrum
changes due to linear shoaling but histograms of
spectral variations remain unchanged, as in Figure
6(b), for all the stations.

In closing, the numerical simulations demon-
strate clearly that nonlinear wave interactions are
capable of imparting variability to a wave spec-
trum of initially constant form. The precise order

(i.e. second, third) of the nonlinear mechanism is
immaterial as long as it facilitates redistribution of
energy among spectral components. After suffi-
cient energy exchange the eventual spectral varia-
bility histogram is expected to approach the chi-
square form; namely, a truly random process.
Finally, in this randomization process, the shape
of bathymetry is not important at all since
a similar numerical test, previously conducted
over a constant slope, gave virtually the same
results (Beji and Nadaoka 1998). The most impor-
tant thing is to promote the nonlinear energy
exchange among spectral components by making
amplitudes large enough.
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is the theoretical exp(—r) curve.

4. Concluding remarks

Spectral variability analysis of a field data compris-
ing distinctly different sea states (basically linear
February 25, 1989 data and highly nonlinear
February 28, 1989 data) has confirmed, regardless
of the wave field characteristics, the tenability of
the customary presumption that the spectral varia-
bility histograms follow the exponentially decaying
chi-square distribution. A hypothetical numerical
experiment has been devised to examine the spec-
tral variability of an initially constant spectral form
undergoing nonlinear evolutions over bathymetry.
Histograms of spectral variability reveal that such
a constant spectral form gradually attains

a variability, which is in good agreement with the
chi-square distribution. The spectral variability,
once gained, is maintained even if the wave field
becomes linear by moving into deeper waters or
breaking. Nonlinear wave interactions may be
responsible not only for energy redistribution
among spectral components but also for the truly

random spectral variability observed in ocean
waves.
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