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A B S T R A C T   

A general expression is formulated from the first principles for wave and current forces acting on a body. 
Morison’s equation is recovered as a special case of the general formulation, thus establishing this heuristic- 
regarded equation on a firm theoretical ground. The drag force is clearly seen to be originating from the 
advective acceleration and the skin friction resistance, which is not explicitly represented in Morison’s equation, 
is viewed as a small part of the drag force. For the special case of constant flow velocity the general expression is 
employed to derive a resistance formula for ships. The viscous term is handled through the use of Prandtl-Kármán 
formulation of friction drag due to a turbulent boundary layer. Conflict between Froude and Reynolds scaling is 
reconciled by allowing a deviation from the true partition of the corresponding forces but ensuring in return the 
correct scaling of the total resistance force for the model and ship. The performance of the resistance formula is 
checked against the experimental measurements of various ship forms. Finally, formulas for forces due to a 
current at an angle to a ship are suggested.   

1. Introduction 

Estimation of forces acting on an object moving in fluid or fixed in 
space but subjected to a flow field has always been of a major interest to 
engineers. Froude (Froude and Froude, 1888) made the first compre
hensive and practical treatment of ship resistance and set the tone for 
further research on this subject. As to the wave forces acting on a fixed 
object, the work of Morison, O’Brien, Johnson, and Scaaf (Morison et al., 
1950) in 1950, which resulted in the formulation known briefly as the 
Morison equation, may be referred to as pioneering and most widely 
used one. Despite its popularity this formulation has been regarded as a 
heuristic expression combining the inertia and drag forces. Indeed, the 
paper opens by simply stating the formulation without embarking on 
any justifying argument. The total force exerted by surface waves is 
simply pronounced as composed of a virtual mass force and a drag force. 
This distinct separation and subsequent addition of these different 
contributions have often been questioned (Sarpkaya and Isaacson, 1981; 
SPM, 1984). Here, it is not only observed clearly that these two forces 
essentially stem from the same source but also their addition is naturally 
dictated by the momentum equation itself. Furthermore, a third 
contribution arising from the frictional effects is identified and 
expressed in terms of mean flow velocity as formulated by Prandtl and 
Kármán independently [Prandtl and Tietjens, 1957, p.75] based on 

Blasius’s law of pressure drop for turbulent flows (Blasius, 1911). This 
frictional term however is assessed to be negligible or at most 
accountable as a part of drag force for marine structures with wetted 
surface areas not appreciably greater than frontal projection areas. 

A ship resistance formula is developed by dismissing the incident wave 
field completely and taking only a constant current in the general 
expression describing combined wave and current forces. For ship-like 
vessels the wetted surface area is considerably greater than the frontal 
projection area hence the skin friction drag cannot be neglected. There
fore, the inertia drag term, whose coefficient is manipulated through 
Newtonian arguments, and the skin friction term are kept together in 
establishing a formula for the resistance of ships. The well-known problem 
of the Froude versus Reynolds scaling is resolved in a fundamental way by 
sacrificing the true partition of these forces but gaining the correct scaling 
of the total resistance force. Several surface ships and a submarine are 
considered for testing the predictive capabilities of the resistance formula. 
Formulas for estimating the inline and lateral forces acting on a ship in 
presence of a current at an angle are also suggested in closing. 

2. Derivation of a general force expression from 1-D momentum 
equation 

An object partially immersed in fluid and piercing above the free 
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surface is considered as shown in Fig. 1. For the sake of generality the 
breadth b(z) and length l(z) of the object are varying functions of the 
vertical coordinate z; likewise, the bottom of the object is not necessarily 
sitting on the bed. An incident flow velocity u(x, z, t), which may be 
unsteady and vertically varying, impinges on the body in the x −
direction only. The momentum equation for 1-D flow is 

ρ ∂u
∂t

+ ρu
∂u
∂x

= −
∂p
∂x

+
∂τyx

∂y
(1)  

where ρ is the fluid density, u the velocity in the x − direction, p the 
pressure, and τyx the shearing stress acting in the x − direction normal to 
the y − direction. As the flow is taken one dimensional the velocity 
components v and w are tacitly set to zero by assuming their contribution 
negligible in accord with Froude-Krylov hypothesis, as evoked in 
(Morison et al., 1950). 

Multiply (1) by the volume element dV = dxdydz and integrate over 
the object in the x− and y − directions to get 
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(2)  

where the last two integrals over the left and right semi-surfaces of the 
object indicate the frictional drag due to shearing stresses acting on the 
entire surface area of the object. They are identical for an object with 
xz-plane symmetry. Carrying out the integrals results in 

−
(
pb − pf

)
b(z)dz

= ρ ∂ur

∂t
b(z)l(z)dz +

ρ
2

(
u2

b − u2
f

)
b(z)dz

−

∫ +l(z)/2

− l(z)/2

[
τyx(+∞) − τyx(+b(z)/2)

]
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−

∫ +l(z)/2

− l(z)/2

[
τyx(− ∞) − τyx(− b(z)/2)

]
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(3)  

where the subscripts b and f stand respectively for the back and front of 
the object as aligned in the x − direction. 

When the flow is in the positive x − direction the front side pressure 
pf is greater than the back side pressure pb hence pf − pb is positive. For a 
reversed flow direction it is obviously negative. Area element on the 
front face of the pile b(z)dz is the projected area element dA p(z) =
b(z)dz of the object facing incident flow. Then, (pf − pb)dA p(z) indicates 
the net differential force acting on an infinitesimal height dz of the pile; 
namely, dF = (ff − fb)dz, which may be positive or negative depending 
on the flow direction. 

Fluid acceleration ∂ur/∂t in the vicinity of the object is calculated by 
using a representative flow velocity ur, which, for practical purposes, is 
related to the incident flow velocity by ur = CMu. Since the accelerative 
force is associated with the added or virtual mass of moving body the 
constant CM may be viewed as an added mass coefficient. The symbol CM 
is especially taken to correspond to the mass or inertia coefficient used in 
(Morison et al., 1950). b(z)l(z)dz is no other than the infinitesimal vol
ume element b(z)l(z)dz = dV so that the mass force ρCM(∂u /∂t)dV is 
proportional to the submerged mass ρV of the body. 

The second term on the right of Eq. (3) is the so-called drag force 
component of the Morison equation. It is probably more appropriate to 
name this term inertia drag or dynamic pressure drag as termed in Prandtl 
and Tietjens [Prandtl and Tietjens, 1957, p.86–95]. In order to express 
this component in terms of the incident velocity the difference u2

b − u2
f 

should be related to u2 by a proportionality factor, say CD, again as used 
in (Morison et al., 1950). Writing then u2

b − u2
f = CDu2 gives 

1
2 ρCDu2dA p(z) for the pressure drag per infinitesimal height dz. This 
term is advective acceleration and it would be wrong to consider the 
virtual mass force ρCMutdV as ρCM(ut +uux)dV to account for total 
acceleration of the flow field as argued in the relevant literature. It is 
equally wrong to state that the linearised acceleration is used for the flow 
by taking ut alone. This misconception arises because the origin of the 
drag force as given by Morison et al. (1950) could not be traced to the 
field acceleration uux before. With the aid of the present derivation it 
should be clear that re-introducing uux besides ut in the mass force is 
erroneous. Such an attempt, as investigated in [14, p.457], reveals a 
baffling result because the correct way of treating uux is to treat it as 
pressure drag proportional to the frontal projected area of the object. 
Using the total acceleration ρ(ut +uux) for computing inertia force and 
then adding this to the drag force, which is shown to be arising from 
ρuux, is obviously an inconsistent repetition. 

The last two integrals in Eq. (3) represent the frictional force acting 
on the outer surface of the object. The shearing stresses far away from 
the surface, τyx(+∞) and τyx( − ∞), vanish as the flow field becomes 
uniform. To proceed with the integrals the shearing stresses on either 
side of the underwater body surface, τyx(+b(z) /2) and τyx( − b(z) /2), 
must be specified. Based on the pressure drop formula of Blasius (1911) 
from experiments with turbulent flows Prandtl and Kármán, indepen
dent of each other, derived the following expression for the shearing 
stress on a flat plate 

τ0 = 0.0288ρu2
(ν

u

)1/5 1
̅̅̅
x5

√ (4)  

where subscript 0 denotes the surface value, u is the undisturbed flow 
velocity, x the distance in the lengthwise or flow direction along the 
plate, and ν = μ/ρ the kinematic viscosity. Using τ0 both for τyx(+

b(z) /2)and τyx( − b(z) /2), integrating along the length of the object l(z)
gives 

2
∫ +l(z)/2

− l(z)/2
τ0dxdz=

(
0.072
̅̅̅̅̅̅
Re5

√

)
1
2

ρu2C (z)dz (5)  

where Re = ul(z)/ν is the Reynolds number (Reynolds, 1884) computed 
using the length l(z) in the flow direction x and C (z) = 2(b(z)+l(z)) the 

Fig. 1. A pile subjected to waves and currents.  
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perimeter of the object at a height z. It results from the integration of 
both sides of the object in the x− direction by taking into account the 
protrusion in the y− direction thus circumscribing the cross-section at 
height z. Integral 

∫
C (z)dz = Sw gives the wetted surface area or the 

underwater surface area of the object. Note that the frictional force for 
turbulent flow is not proportional to u2 but u9/5 = u1.8 when the 1/ 5th 
power of velocity in denominator is taken out. Letting l(z) = L, Eq. (5) 
can be rearranged as (0.036ρ /

̅̅̅̅̅̅̅̅
L/ν5

√
)Swu1.8, which is strikingly similar 

to R. E. Froude’s frictional resistance formula RF = fSwU1.825 with f being 
a coefficient which depends on the waterline length of the ship [Rawson 
and Tupper, 2001, p. 699]. Also, these two formulas yield quite com
parable quantitative results. 

It is possible to use a different shear stress formulation for turbulent 
flow such as ITTC, ATTC, Hughes or Granville as listed in Lewis [Lewis, 
1988, p.12]. Nevertheless, the present work adheres to the 
Prandtl-Kármán formula as it has a solid theoretical and experimental 
background. 

Now that each contribution in Eq. (2) has been expressed in terms of 
the incident velocity u, a general expression for the horizontal force dF in 
the x − direction per infinitesimal height dz can be written as 

dF = ρ CM
∂u
∂t

dV (z) +
1
2

ρ CDu2dA p(z) +
1
2

ρ CFu2C (z) dz (6)  

where CF = 0.072αf/
̅̅̅̅̅̅
Re5

√
is the friction coefficient with an additional 

constant αf , which, like CM and CD, is introduced to compensate varia
tions in the flow velocity and O(1); for flat plates αf can simply be set to 
unity. 

A quite important detail concerning the appropriate use of the above 
formula must be mentioned. The inertia terms, the first two terms, scale 
according to the Froude number while the remaining friction term scales 
according to the Reynolds number. If Eq. (6) is to give consistent results 
for a model and its full-scale, a correction factor must be introduced to 
the Reynolds number in the friction term. In §6 this problem is resolved 
by a formal analysis and then demonstrated for a container ship in §6.1. 

3. Waves and currents combined 

By assuming that the linear superposition principle holds the flow 
field u may be specified as composed of two different contributions; a 
steady current Uc(z) which depends only on the vertical coordinate z, 
such as a logarithmic profile, and an unsteady incident wave field Uw(x,
z, t). Thus, letting u = Uc(z) + Uw(x, z, t) in (6) gives 

dF = ρ CM
∂Uw

∂t
dV (z) +

1
2

ρ CD
(
U2

c + 2UcUw +Uw|Uw|
)
dA p(z)

+
1
2

ρ CF
(
U2

c + 2UcUw +Uw|Uw|
)
C (z) dz (7) 

which may be viewed as a generalized form of Morison’s equation 
with an additional term representing the frictional force due to turbulent 
flow. Absolute values are used to ensure the correct force direction due 
to cyclic wave motions. We have thus begun with the one-dimensional 
momentum equation and arrived at a generalized Morison equation 
without postulating specific forms for the forces involved. Comments on 
each one of the three terms are now warranted. 

The first component is due to local acceleration of the flow field and 
manifest only for unsteady or time-dependent flows such as waves. This 
force is proportional to the fluid mass decelerated by a fixed object or 
accelerated by a moving body. 

The second component is due to the advective acceleration of the 
flow field, which is conventionally called the inertia drag. This force is 
proportional to the projection area of the object upon which the flow 
impinges. It is essentially the same as the force caused by a water jet 
impinging on a plate as shown in Fig. 2. Writing Bernoulli’s equation at 
two different points gives p = patm + 1

2 ρU2 for the pressure on the plate; 
the force is simply obtained by multiplying the pressure by the circular 

area on which the jet hits. For a moving body the corresponding resistive 
force arises from the motion of the body against a motionless inviscid 
fluid. For a completely submerged symmetrical body one has to deal 
with D’Alambert’s paradox of zero resistance but that may be dismissed 
as a problem already resolved. 

The third component is due to the fluid viscosity which causes a skin 
friction drag which is proportional to the wetted surface area of the 
object. Depending on the flow characteristics –laminar, transient, 
turbulent– the functional dependency of this force on velocity differs. At 
a first glance the friction drag looks similar to the inertia drag but there 
are essential differences between the two. First of all, the friction drag is 
proportional to the wetted surface area of the object whereas the inertia 
drag to the frontal projection area of the object. More importantly, the 
skin friction is not proportional to the square of the flow velocity but, for 
this particular turbulence model, to the 9/5th power of the velocity. 
Furthermore, CF is a function of the Reynolds number and when eval
uating the total force from Eq. (6) by integration this point must be 
properly handled. An amendment for the scaling effect as done in §6 
must be implemented. 

Introduction of the friction drag as a new force component is a 
notable aspect of the general force expression; however, for structures 
with relatively small underwater surface areas such as piles, the relative 
importance of this new term is low compared to the others. For a typical 
range of Reynolds numbers, Re = 104 − 106, the friction coefficient, 
CF = 0.01 − 0.005, is quite small; hence, unless the wetted surface area 
is about one to two orders of magnitude O(101 − 102) larger than the 
frontal area, this contribution is negligible. Therefore, the absence of the 
skin friction term in the Morison equation would not cause any 
perceptible error, especially as this part could be absorbed into the drag 
force. On the other hand, ignoring this component in computing the 
resistance of ship-like forms would simply be unacceptable as demon
strated in §6 by sample resistance computations. Thus, while the absence 
of skin friction term in certain sea structures is not a problem, its in
clusion for vessels with relatively large wetted surface areas is a must. 
Finally, retaining the skin friction for structures with not quite large but 
not small wetted surface areas may lead to more refined and accurate 
force estimates. Accomplishing this aim naturally requires a compre
hensive study of re-assessing the quantitative values of CM, CD, and CF. 
Such a task may possibly be initiated by taking αf in CF equal to a def
inite number such as unity and then investigating the values of CM and 
CD with reference to measurements for varying Reynolds numbers. 

4. Morison’s equation 

Morison, O’Brien, Johnson, and Scaaf (Morison et al., 1950) 
formulated the total wave force acting on a bottom-mounted surface-
piercing pile of circular cross-section as a sum of two contributions: the 
virtual mass force and the drag force. Since its introduction in 1950 no 
work of surpassing quality has been reported; therefore, although 

U

patm+ U2 p + 0=___1
2

ρ

Fig. 2. Water jet impinging on a plate at right angle.  
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regarded essentially heuristic, it has been in wide use, probably due to 
the hidden solid foundation behind it. Now that a general expression of 
total force based on a 1-D momentum equation has been derived the 
Morison equation can be recovered from it and associated with firm 
theoretical grounds. In the absence of a current, Uc = 0, Eq. (7) becomes 

dF = ρ CM
∂Uw

∂t
dV (z) +

1
2

ρ CDUw|Uw|dA p(z)

+
1
2

ρ CFUw|Uw|C (z) dz
(8) 

The volume and projected area elements for a circular cylinder are 
dV (z) = π

4D
2(z)dz and dA p(z) = D(z)dz, respectively. Further, setting 

the perimeter as C (z) = πD(z) with D(z) denoting the pile diameter at 
an arbitrary height z, turns Eq. (8) into 

dF =
π
4

ρ CM
∂Uw

∂t
D2(z) dz +

1
2

ρ CDUw|Uw|D(z) dz

+
π
2

ρ CFUw|Uw|D(z) dz
(9)  

where CF = 0.072αf/
̅̅̅̅̅̅
Re5

√
is the friction coefficient with Re = UwoD(z)/ ν 

defined in terms of the orbital velocity amplitude Uwo and l(z) = D(z). 
Eq. (9) can be manipulated further by combining the last two terms, 

dF =
π
4

ρ CM
∂Uw

∂t
D2(z) dz

+
1
2

ρ(CD + πCF)Uw|Uw|D(z) dz
(10) 

If the friction term CF is dismissed completely or absorbed into CD, as 
being small compared to CD, Eq. (10) becomes Morison’s equation in its 
extended form for vertically varying diameter D(z) as employed in (Beji, 
2019). 

For oscillatory motions the virtual mass and inertia drag depend on 
the period or frequency of motion; furthermore, flow irregularities such 
as separation and vortex shedding appreciably affect the magnitude of 
these forces. The present formulation, in line with the Morison equation, 
has ignored such three-dimensional effects completely from the begin
ning; therefore, it is only natural to lump all these effects into the co
efficients. Keulegan-Carpenter number K = UT/D (Keulegan and 
Carpenter, 1958) and Reynolds number (Reynolds, 1884) are the pri
mary parameters that CM, CD, and CF depend on. For an explicit repre
sentation of these dependencies Eq. (10) is re-written as 

dF =
π
4

ρ C̃M(K,Re)
∂Uw

∂t
D2(z) dz

+
1
2

ρ C̃D(K,Re) Uw|Uw|D(z) dz
(11)  

where C̃M(K,Re) and C̃D(K,Re) emphasize the parametric dependencies 
on K and Re. Reader is directed to Sarpkaya and Isaacson [14, p.93–114] 
for an extensive exposition of the subject. 

5. Resistance formula for ship-like forms based on general 
expression 

Resistance of ship-like forms is now investigated in the light of Eq. 
(6) by assuming that the resistance experienced by a vessel moving at a 
speed U is equivalent to the external force acting on a stationary vessel in 
a fluid flowing with velocity U. If the flow velocity is constant the ac
celeration is zero hence the first term of Eq. (6) vanishes. We then have 
the inertia and skin friction drag as the components of total resistance. 
The inertia drag for inclined planes and curved surfaces is examined in 
line with Newton’s classic treatment, which is recapitulated below. 
Scaling of skin friction drag is elaborated in §6. Wave making drag which 
is important for surface vessels cannot be explicitly considered in our 
treatment but an elementary formulation albeit insufficient is presented 
at the end of this section. It must be emphasized that only a partial 

treatment of bow effect is accomplished and that the bow and stern wave 
interaction is not accounted for at all. 

5.1. Newton’s resistance law revisited 

Newton proposed a quadratic resistance law 

DI = ρ C′

A pu2 (12)  

where DI is the inertia drag significant for fluids of small viscosity, C′

=

u/u′ is a proportionality factor denoting the ratio of the speed u of 
moving object to the velocity u′ imparted to the fluid particles coming 
into contact with the body. ρ and A p are respectively the fluid density 
and the projected frontal area of the object in the direction of flow as 
defined before. The formula essentially states that the momentum 
generated per unit time is equal to the resistance force acting on the 
body. The mass of fluid particles coming into collision with the moving 
body per unit time is ρA pu. Velocity u′ , which is assumed to be pro
portional to the speed u of the object is imparted to particles. The 
generated momentum is then ρA puu′

= ρC′

A pu2, which is the resis
tance force experienced by the body. Newton extended the formulation 
to the case of a flow with an angle β to a perfectly smooth plane. 
Assuming that the velocity component perpendicular to the plane is 
annihilated, the mass flow rate becomes ρA pu sin β while the imparted 
velocity is u sin β. Consequently, the force acting perpendicular to the 
plane is ρA pu2sin2β [11, p.86]. These arguments, though speculative in 
nature, are used in re-defining the inertia drag coefficient CD for ship- 
like forms with curved bow shapes. 

Unfortunately, resistance force values based on Newton’s impact 
theory turned out to overestimate the measurements. For instance if the 
flow is perpendicular to a plane β = π/2 hence sin2(π /2) is 1.00, but the 
experimental value is 0.55. Similar overestimates are observed for 
different forms [11, p.87]. Despite these discrepancies the quadratic 
form is in accord with the inertia drag though not strictly valid for the 
skin friction. 

5.2. Shape factor 

A simple geometrical form crudely resembling the bow section of a 
ship with two incident water jets is shown in Fig. 3. 

The water jet impinging on the inclined surface is assumed to reflect 
from it by making the same angle with the surface normal. The reflected 
jet is resolved into two components; one is running parallel to the in
clined surface and other normal to it. Thus, the velocity component 
normal to the inclined surface is the annihilated velocity component in 
Newton’s argument hence responsible for producing a pressure force on 
the surface as in the case of a water jet hitting on a plane in Fig. 2 with 
the difference that the velocity normal to the surface is now Usinβ. The 
dynamic pressure acting on the inclined plane is then 12 ρU2sin2βand the 
total force on the inclined surface is 1

2 ρA U2sin2β with A being the 
surface area. But this force acts normal to the inclined plane, the force 
acting in the direction of incoming flow is 

fi =

(
1
2

ρA U2sin2β
)

sinβ=
1
2

ρA pU2sin2β (13)  

where A p = A sinβ is the projected surface area of the inclined plane. 
With the exception of the factor 1/2 Eq. (13) is in complete accord with 
Newton’s formulation for inclined planes. The factor 1/2, which is an 
important correction for the magnitude, arises from the use of Ber
noulli’s equation instead of momentum approach. 

Eq. (13) could be obtained in a slightly different way. If we consider 
that while the normal velocity component Usinβ is annihilated or re
flected away from the surface, the incident flow U continues flowing as 
Ucosβ over the inclined surface as shown in Fig. 3, Bernoulli’s equation 
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written along this flow line is 

1
2

ρ U2 =
1
2

ρ (Ucosβ)2
+ ps (14)  

where ps is the pressure on the inclined surface and the atmospheric 
pressure has been dismissed as being immaterial for the present pur
poses. Solving for ps gives as before 12 ρU2sin2β for the dynamic pressure 
on inclined surface. 

The presence of a free surface, which could not be included in our 
formulation, is now partially considered for a flow with velocity U 
hitting on a curved bow-like form as depicted in Fig. 4. The dynamic 
pressure on the bow-like solid surface would cause an elevation of the 
free surface proportional to U2sin2βl with respect to a reference level zr. 
Implementing Bernoulli’s equation again for an annihilated velocity 
Usinβl gives 

1
2

ρ U2sin2βl + ρgzr = 0 + ρg(zr + ζ) (15)  

where g is the gravitational acceleration, βl the local inclination angle of 
the solid surface, and ζ the free surface elevation increase due to the 
local dynamic pressure. Solving for ζ yields 

ζ =
U2sin2βl

2g
(16)  

which may be included as a small correction in computing the projected 
area where the dynamic pressure acts on. This expression of ζ is the only 

part of the present formulation that can come close to but definitely not 
sufficient of modelling the wave making drag. Note that the magnitude 
of ζ gets larger for βl values approaching the right angle and becomes 
maximum for βl = π/2, which corresponds to a jet directly hitting a flat 
plate as in Fig. 2. On the other hand, ζ gets smaller for smaller βl values 
and vanishes completely for βl = 0 as sketched in Fig. 4 with blue line. 

The mean inclination angle for any given bow shape can be formu
lated in terms of a fraction ξ of the ship length L and breadth B. If the 
distance to the location where the ship breadth reaches its maximum 
value is ξL, as in Fig. 3, the mean inclination angle would exactly be β =

arctan(B /2ξL), regardless of the precise shape of the bow. Thus, 

sin2β=
1

1 + (2ξL/B)2 (17)  

where the ratio ξ ≤ 1/2 in general and ξ = 1/2 for a ship without par
allel body if B is gained exactly at the amidships. ξ may be termed as the 
bow shape factor of inertia resistance or shortly the shape factor. 
Nevertheless, this geometrical interpretation should not be taken strictly 
applicable as the arguments pictured in Figs. 3 and 4 are obviously very 
speculative. sin2β should in general be viewed as a multiplier repre
senting the effect of streamlining of the entire body form not only the 
bow section. 

5.3. Specification of shape factor 

The selection of ξ is quite important and a definite guidance must be 
provided for it. First of all, while this parameter stems from entirely 
geometric considerations of the bow shape it has the wider aspect of 
covering general hydrodynamic aspects hence resistance characteristics 
of the ship. Variation range of the shape parameter is found to be rela
tively limited, ξ = 0.30 − 0.45, for different surface ship types including 
a submarine. Specifically, for a container ship and a fishing vessel ξ =

0.45, for a passenger-cargo ship ξ = 0.35, for two other ships not re
ported here ξ = 0.30, and finally for a submarine ξ = 0.35 agree well 
with experimental data. This narrow range of change is probably 
desirable to obtain a good estimate for the resistance curve of a given 
ship. On the other hand, further parametrization of ξ does not seem 
possible due principally this limited range of variation. Also, again 
because of this narrowness in range, the shape factor appears to repre
sent those details in a ship form that cannot be formulated in terms of 
general parameters such as L, B, T, CB, etc. In a sense ξ is an ultimate 
quantity representing the degree of success of a design. If ξ is relatively 
low, the ship has inefficient resistance characteristics as ξ = 0 gives β =

π/2, flow hitting at right angle on a flat plate. On the contrary if ξ is 
higher the ship may be said to be a relatively efficient design. 

6. Ship resistance calculations 

For a constant current speed U integrating Eq. (6) vertically results in 

F =
1
2

ρ CDA pU2 +
1
2

ρ CFS wU2 (18)  

where A p is the frontal projected area and S w the wetted surface area of 
the vessel. Based on the arguments advanced in §5 the inertia drag co
efficient CD is re-defined to comply with Eq. (13) so that CD = αdsin2β, 
where αd is constant of O(1) and β the mean inclination angle of the bow 
form as expressed in Eq. (17). Making use of the new definition of CD in 
Eq. (18) and re-arranging result in 

F =
1
2

ρ αdsin2β
(

1+
B

A p

sin2β
2g

U2
)

A pU2 +
1
2

ρ αf

(
0.072
̅̅̅̅̅̅
Re5

√

)

S wU2 (19)  

in which Re = UL/ν. An effective projected frontal area 
A pe = A p + Bζ = A p(1+Bζ /A p) is employed by the use of (16) to ac
count for the additional area due to mean surface rise. 

B

β

β

β

βU

U

U

U

U

U

U

U

β

β

β

β

sin

sin

cos

cos

Lξ

Fig. 3. Water jets impinging on inclined plates of bow-like shape.  

Fig. 4. Free surface elevation ζ (blue) due to a flow impinging on a bow-like 
shape. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the Web version of this article.) 
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The inertia drag and the skin friction drag are distinctly different 
parts of the total drag and while the former obeys the Froude scaling law 
the latter the Reynolds scaling law. Since it is not possible to satisfy these 
laws simultaneously the Froude scaling is used for the model tests of 
resistance and the effect of unsatisfied Reynolds scaling is eliminated by 
a roundabout approach. Likewise, Eq. (19) sums the two different drag 
components and obviously would not give the correct results for a ship 
and its model when the same coefficients, αd, αf , and ξ, are used in 
computations. This drawback may be overcome by resorting to the 
fundamentals. According to the Froude scaling, Us/

̅̅̅̅̅̅̅
gLs

√
= Um/

̅̅̅̅̅̅̅̅
gLm

√
so 

that if Ls = λLmthen Us = λ1/2Um, A ps = λ2A pm, etc. Assuming that Eq. 
(19) is given for a full-scale mother ship and we would like to express it 
in terms of the model ship scaled down by λ, the equation becomes 

Fs =
1
2

ρ αdsin2β
(

1+
λBm

λ2A pm

sin2β
2g

λU2
m

)

λ2A pmλU2
m

+
1
2

ρ αf

(
0.072

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

λ1/2UmλLm/ν5
√

)

λ2S wmλU2
m (20) 

Dividing the entire equation by λ3 gives 

Fs

λ3 =Fm =
1
2

ρ αdsin2β
(

1+
Bm

A pm

sin2β
2g

U2
m

)

A pmU2
m

+
1
2

ρ αf

(
0.072
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

λ3/2UmLm/ν5
√

)

S wmU2
m (21) 

The Reynolds number in the skin friction term must obviously be 
multiplied by λ3/2 if the force scaling is to be correct. λ may be defined by 
virtually any dimensional quantity characterizing the ship such as λ =

Ls/Lm, λ = Bs/Bm, etc. Here, we shall use λ = (∇s/∇m)
1/3 since the 

displacement volume ∇ = LBTCB embodies all the basic characteristics 
of a ship and therefore appears to be a better choice. In order to 
implement this scale correction into Eq. (21) a definite reference value 
for ∇s must be selected. A convenient choice would be to set it to unit 
cubic meters ∇s = ∇ref = 1 m3 so that λ = 1/∇1/3

m hence λ3/2 = ∇− 1/2
m . It 

must be emphasized that this multiplier is non-dimensional because the 
reference value is taken dimensional in cubic meters and more impor
tantly by definition λ is a non-dimensional quantity. In principle any 
dimensionally correct parameter with any reference magnitude can be 
used; the choice only affects the numerical value set to the shape factor 
ξ. The true partitioning of the inertia and friction drag is obviously lost 
unless ∇ = ∇ref but the total is correct and scaled correctly. 

Instead of the Prandtl-Kármán formula, if the more common ITTC 
approximation is used, the scale corrected friction coefficient becomes 
CF = 0.075/[log(Re/

̅̅̅̅
∇

√
) − 2]2 with ∇ being the displacement volume 

but regarded non-dimensional. ITTC formula gives somewhat higher 
skin friction drag in comparison with the Prandtl-Kármán formula. 

Now that the appropriate scaling has been established for the friction 
drag component the total resistance experienced by a ship advancing at 
the constant speed U can be written as 

F
1
2

ρ A pU2
=

(

1 +
B

A p

sin2β
2g

U2
)

sin2β

+0.072
(

Re
/ ̅̅̅̅

∇
√ )− 1/5(

S w
/

A p
)

(22)  

where the constants αd and αf both have been set to unity as the shape 
factor ξ alone is sufficient to tune the formula. The frontal projection 
area is calculated as the mean cross-sectional area of the ship A p = ∇/

L = BTCB. In case the wetted surface area is unavailable, Taylor’s for
mula S w = c

̅̅̅̅̅̅̅
∇L

√
with c = 2.6 is a good approximation [Stokoe, 2003, 

p.27]. 
Eq. (22) has been derived entirely based on the first principles. The 

main assumption is that the flow is one-dimensional and undisturbed by 
the presence of the object in accord with the Froude-Krylov hypothesis. 
A rather speculative argument in line with Newton’s momentum 
approach is also called forth to introduce a tuning parameter for the 
inertia drag. Addition of the separate contributions of the inertia and 
friction forces is justified on a firm theoretical foundation by taking into 
account the scaling appropriately. With the scaling correction Eq. (22) 
can produce the resistance curves of a parent ship and its model in 
complete agreement with each other without changing the shape factor 
ξ, the sole tuning parameter of the equation. This point is demonstrated 
for a container ship and its model in §6.1. 

Resistance curves for three different ships and a submarine are now 
produced by employing Eq. (22) together with (17). Each curve is then 
compared with the data points obtained from corresponding experi
mental measurements. A subsection outlining the use of Eq. (22) for 
estimating forces due to a current flowing at an angle to a ship is also 
included. 

6.1. Resistance curves of a container ship model and her full-scale 

The first test case considered is a ship model of the Korea Research 
Institute of Ships and Ocean Engineering (KRISO) container ship model 
MOERI-KCS (Van et al., 1998). The model was introduced solely for 
research aims and since then it has been used mainly for CFD validation 
purposes. Here, resistance curves for the model ship and her intended 
full-scale are computed from Eq. (22) for exactly the same shape factor ξ 
and compared with experimental data. Table 1 gives the main charac
teristics of the MOERI-KCS container ship model and the corresponding 
full-scale ship. 

Seawater density and viscosity are taken ρ = 1026 kg/m3 and ν =

1.189× 10− 6 m2/s, respectively. The corresponding values for fresh 
water are ρ = 998.2 kg/m3 and ν = 1.003× 10− 6 m2/s. By trial-and- 
error the shape factor is set to ξ = 0.45 so that 
sin2β = 1/[1+(2ξL/B)2] = 0.0236 both for the model and full-scale ship 
since L/B = 7.2786/1.019 = 230.0/32.2 = 7.14 is the same. The mean 
projected area is obtained from A p = ∇/L for each case. Unless indi
cated otherwise the length between perpendiculars Lpp is used for all the 
calculations presented in this and other subsections. 

Fig. 5 shows the experimental data and the resistance curve 
computed from Eq. (22) for a range of Froude numbers Fr = U/

̅̅̅̅̅
gL

√
. 

Using the same shape factor the resistance curve of the full-scale ship is 
also computed and drawn in Fig. 6 with scaled up experimental data. 
Except for minor differences due to the use of different (fresh vs salt 
water) viscosity values the computed resistance curves are identical. 
This proves that the different scales are handled perfectly by Eq. (22), 
which is made up of two distinct drag components with different scaling 
laws. Provided that the single tuning parameter ξ is selected properly the 
present resistance formula performs well; disagreement in the high 
speed region, Fr > 0.25, is likely to be a manifestation of additional 
wave resistance, which could not be included in Eq. (22). From the 
mathematical point of view Eq. (22) is essentially a second-order poly
nomial in U but the experimental curve for higher speeds obviously 
diverges from the quadratic form. 

Table 1 
Main characteristics of MOERI-KCS container ship model and her full-scale.   

Model Full-scale 

LWL Length waterline  7.3577 m  232.5 m  
LPP Length perpendiculars  7.2786 m  230.0 m  
B Breadth moulded 1.0190 m  32.2 m  
T Draft moulded 0.3418 m  10.8 m  
SW Wetted surface area  9.4379 m2  9424.0 m2  

▽ Volumetric displacement  1.6490 m3  52030.0 m3  

CB Block coefficient  0.6505 0.6505  

S. Beji                                                                                                                                                                                                                                             



Ocean Engineering 218 (2020) 108121

7

6.2. Resistance curve of a fishing vessel 

Obreja et al. (2010) investigated the manoeuvring characteristics of 
a fishing vessel Città di Genova and besides hydrodynamic derivatives 
presented experimental results of resistance tests. The full-scale main 
characteristics of this vessel are given in Table 2. The wetted surface 
area is estimated by the use of Taylor’s formula S w = 2.6

̅̅̅̅̅̅̅
∇L

√
and the 

mean projected area is calculated from A p = ∇/L as indicated before. 
The shape factor is again set to ξ = 0.45 as in §6.1. Despite the very 
different ship types, the container ship and fishing vessel, the reasonable 
performance of Eq. (22) with the same ξ = 0.45, shown in Fig. 7, may be 
attributed to two main reasons. First, Eq. (22) contains all the essential 
elements of expressing ship resistance in terms of overall characteristics 
of a ship. Second, ξ is not related to the type of ship considered but 

possibly dependent on the ship form details that cannot be parametrized 
easily. These points render the determination of ξ for a given ship an 
open question. A plausible approach is to generate two curves corre
sponding to, say ξ = 0.25 and ξ = 0.50, to describe a wide region be
tween higher and lower resistance curves that would include the true 
resistance curve of the vessel. 

Finally, we must point out that despite the overall acceptable 
agreement for ξ = 0.45, different character of the experimental resis
tance curve does not allow a good fit in any part. Indeed, a best-fit to the 
experimental data in the form RT = A⋅Uα yields A ≃ 0.025 and α ≃ 3.07, 
revealing that the experimental resistance curve is cubic in U. This 
remarkable point is not peculiar to this particular case alone and should 
be investigated on its own, probably in connection with wave-making 
drag. 

6.3. Resistance curve of a passenger-cargo coaster 

Hetharia, de Fretes and Gaspersz (Hetharia et al., 2019) studied 
resistance characteristics of three different ships by computing the 
resistance curves from statistical formulas and by testing the ship models 
in towing tank. A passenger-cargo coaster, whose particulars are given 
in Table 3, is considered here. 

Since the length between perpendiculars was not provided an esti
mated value LPP = 35.00 m is used. The shape factor is set to ξ = 0.35, 
lower than the value used in the previous two cases. Fig. 8 shows the 
resistance curves of the coaster according to the experimental data and 
Eq. (22). Agreement between the two curves is quite acceptable, espe
cially if allowances are made for the simple form of Eq. (22) with just 
single tuning parameter ξ. 

6.4. Resistance curve of a submarine 

DARPA-SUBOFF submarine model developed under the Submarine 
Technology Program Office of the US Defense Advanced Research Pro
jects Agency (DARPA) is a well-known prototype used for research 
purposes. Table 4 gives the main characteristics of the DARPA-SUBOFF 
bare hull submarine model. 

Experimental measurements of Han-Lieh and Thomas (1998) are 
now used for testing the performance of a slightly reduced form of Eq. 
(22). In the absence of a free-surface the additional increase of the 
frontal projected area Bζ is dismissed hence for an underwater vessel Eq. 
(22) is reduced to the following form. 

F
1
2 ρ A pU2 = sin2β + 0.072

(
Re
/ ̅̅̅̅

∇
√ )− 1/5(

S w
/

A p
)

(23) 

Fig. 5. Resistance curves for MOERI-KCS container ship model. Experimental 
data (circled red line) and Eq. (22) for ξ = 0.45 (black line). (For interpretation 
of the references to colour in this figure legend, the reader is referred to the 
Web version of this article.) 

Fig. 6. Resistance curves for MOERI-KCS full-scale container ship. Experi
mental data (circled red line) and Eq. (22) for ξ = 0.45 (black line). (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 

Table 2 
Main characteristics of fishing vessel Città di Genova.  

LOA Length overall  32.70 m  
LPP Length perpendiculars  25.00 m  
B Moulded breadth 8.00 m  
T Mean draft 2.58 m  

▽ Volumetric displacement  296.00 m3  

CB Block coefficient  0.574 
U Ship speed 12.00 kn   

Fig. 7. Resistance curves for fishing vessel Città di Genova. Experimental data 
(circled red line) and equation (6) for ξ = 0.45 (black line). (For interpretation 
of the references to colour in this figure legend, the reader is referred to the 
Web version of this article.) 
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where sin2β = 1/[1+(2ξL/B)2] as defined before. For constructing the 
resistance curve of DARPA-SUBOFF model, Eq. (23) is used with ξ =

0.35. The fresh water density and viscosity values are used and the 
projected area is calculated from A p = ∇/L by setting L = LOA for the 
submarine length. 

Fig. 9 shows the resistance curves of DARPA-SUBOFF submarine 
model according to the experimental data and Eq. (23) for ξ = 0.35. The 
prediction agrees virtually perfectly with the measurements; this must 
be basically due to the second-order character of the experimental data. 
We may also conclude that the absence of additional wave making 
resistance makes the agreement remarkably well; otherwise, above a 
definite threshold speed, the presence of free-surface changes the 
character of resistance curve to the third-order. 

6.5. Forces due to a current at an angle to a ship 

Especially for ship manoeuvring simulations the estimation of wave 
and current forces at an angle to the ship is of primary importance. Eq. 
(22) developed for the purpose of estimating ship resistance may well be 
adopted for such use. Here, we shall outline the basic approach for such 
a possibility, a detailed investigation exceeds the limits of this already 
lengthy treatment. Let it be remarked that for wave forces the unsteady 
mass or inertia force in (7) should be added to (22) while the friction 
drag can be neglected. 

The current angle of attack relative to the bow is expressed as γc =

ψ − βc − π where ψ is the heading angle of the ship and βc the current 
direction angle measured due north [Fossen, 2011, p.153]. Accordingly, 
the current velocity components in the x− and y − directions of a co
ordinate system fixed to the ship are uc = − Vccosγcand vc = Vcsinγc 
where Vc is the current speed. If the vessel is in motion the relative 
current speeds ur = u − uc and vr = v − vc must be used [Fossen, 2011, 
p.125–27]. Then, in terms of relative current speeds the external force 
components can be formulated from Eq. (22) as follows. 

Fx

1
2

ρ A pxur |ur|

=

(

1 +
B

A px

sin2βx

2g
u2

r

)

sin2βx

+0.072
(

Rex

/ ̅̅̅̅
∇

√ )− 1/5(
S w
/

A px
)

(24)  

Fy

1
2

ρ A pyvr |vr|

=

(

1 +
L

A py

sin2βy

2g
v2

r

)

sin2βy

+0.072
(

Rey

/ ̅̅̅̅
∇

√ )− 1/5(
S w
/

A py
)

(25) 

In the above formulas A px = ∇/L = BTCB and A py = ∇/B = LTCB 

are the mean cross-sectional areas in the lengthwise and lateral di
rections of the ship. The Reynolds numbers for the x − and y − directions 
are Rex = |ur|L/ν and Rex = |vr|B/ν, respectively. 
sin2βx = 1/[1+(2ξxL/B)2

] and sin2βy = 1/[1+(2ξyB/L)2
] are the inertia 

force coefficients principally determined by the shape factors ξx and ξy 

for the x− and y − directions. ξx may be taken as determined according 
to the resistance characteristics of the ship, which is shown to vary 
approximately in the range 0.30 − 0.45. ξy on the other hand must be 
determined by comparisons with experimental measurements of definite 
ships or relevant statistical formulas. ur|ur| and vr|vr| are used instead of 
u2

r and v2
r to account for correct force directions. Also, the turning 

moment acting on the ship due to current can be formulated with the aid 
of Fy as Mc = xgFy Fy with xgFy denoting the distance between the hori
zontal centre of gravity of ship and the acting point of lateral force Fy. In 
this approach an empirical expression for xgFy as a percentage of ship 
length is necessary. The Munk moment in presence of current should 
also be accounted for properly. Finally, it is worthwhile to note that Eq. 
(24) becomes identical with (22) when ur is equated to the ship speed U. 

7. Concluding remarks 

An elementary treatment of wave and current forces and ship resis
tance has been done based on the first principles. A general theoretical 

Table 3 
Main characteristics of passenger-cargo coaster.  

LOA Length overall  38.00 m  
LWL Length waterline  36.90 m  
B Moulded breadth 8.00 m  
T Draft 2.50 m  
SW Wetted surface area  327.20 m2  

▽ Volumetric displacement  331.80 m3  

CB Block coefficient  0.450 
U Ship speed 12.00 kn   

Table 4 
Main characteristics of DARPA-SUBOFF submarine model.  

LOA Length overall  4.356 m  
B Breadth 0.508 m  
SW Wetted surface area  5.980 m2  

▽ Volumetric displacement  0.697 m3   

Fig. 8. Resistance curves for a passenger-cargo coaster. Experimental data 
(circled red line) and Eq. (22) for ξ = 0.35 (black line). (For interpretation of 
the references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 

Fig. 9. Resistance curves for DARPA-SUBOFF submarine model. Experimental 
data (circled red line) and Eq. (23) for ξ = 0.35 (black line). (For interpretation 
of the references to colour in this figure legend, the reader is referred to the 
Web version of this article.) 
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formulation of wave and current forces acting on an object has been 
accomplished by the use of 1-D momentum equation. The resulting 
general expression renders Morison’s equation as a special case, thus 
placing this equation on a solid theoretical ground. Furthermore, the 
precise meaning of the drag force is clarified by observing it to be 
actually nothing more than the inertia drag or dynamic pressure drag. 

The inertia drag coefficient of general expression is then modified for 
ship resistance calculations by following Newton’s arguments. The ef
fect of Froude and Reynolds scaling difference is removed by changing 
the Reynolds number in a way that the resistance calculations for a ship 
and her model are consistent for the same tuning factor. The resistance 
formula is tested for three different types of surface ships and a sub
marine against the experimental data with quite agreeable results. This 
work however makes no pretence of proposing a precise formula for 
resistance calculations but rather of disclosing the essential physical 
mechanisms that lead to sound quantitative estimates. Further re
finements in the formulations may be possible in the future by imple
menting the hints and suggestions made here, especially concerning the 
wave-making resistance, bow-stern wave interaction, and more impor
tantly change in resistance curve character of surface ships above a 
threshold speed. The last issue, apparently not brought up in the rele
vant literature yet, seems to be the most challenging problem. 
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