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Abstract 
Polynomial functions containing terms with non-integer powers are studied 
to disclose possible approaches for obtaining their roots as well as employing 
them for curve-fitting purposes. Several special cases representing equations 
from different categories are investigated for their roots. Curve-fitting appli-
cations to physically meaningful data by the use of fractional functions are 
worked out in detail. Relevance of this rarely worked subject to solutions of 
fractional differential equations is pointed out and existing potential in re-
lated future work is emphasized. 
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1. Introduction 

Euler (1707-1783), arguably the most prolific mathematician of all times who 
contributed greatly to every branch of applied and pure mathematics, was prob-
ably the first to work on functions containing terms with fractional powers. Eu-
ler’s most praised book Introductio in Analysin Infinitorum [1], which is re-
garded to establish the subject of mathematical analysis, opens with definitions 
and exercises concerning various functions including fractional exponents of va-
riables [1]. Laguerre (1834-1886) gave a survey of the roots of polynomials in 
usual forms but also considered what may briefly be termed as polynomials of 
fractional powers [2]. Nevertheless, studies concerning functions with fractional 
exponents have been quite limited over the years and the relevant literature is 
scarce. On the other hand, works on differential and integral equations of frac-
tional order are on the rise and some analytical solutions to these types of equa-
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tions are linked to functions containing terms with fractional powers. 
Among numerous works on fractional derivatives and integrals, we mention 

only a few here for introductory purposes. Diethelm et al. [3] presented a selec-
tion of algorithms for numerical solution of definite governing equations with 
derivatives or integrals of fractional order. Daftardar-Gejji and Jafari [4] em-
ployed Adomian decomposition method as rectified by Wazwaz [5] for the solu-
tion of a multi-order fractional differential equation. Li [6] used cubic B-spline 
wavelet collocation for the solution of fractional differential equations and ob-
tained excellent agreement with known analytical solutions containing terms of 
fractional powers. Yüzbai [7] solved fractional Riccati type equations by em-
ploying Bernstein polynomials as converted to contain fractional powers. Kawala 
[8] proposed a numerical approach based on Legendre polynomials for the solu-
tion of a class of fractional differential equations. An extensive review of frac-
tional calculus in modelling biological phenomena can be found in Ionescu et al. 
[9]. In these and quite many similar works, it is possible to see a definite connec-
tion between factional derivatives and fractional functions. 

The present study may be viewed as a preliminary work investigating the func-
tions with terms of non-integer powers. First, roots of selected functions are 
considered; particularly, terms with fractional and transcendental powers are 
examined and distinct differences between these two categories are pointed out. 
Then, practical use of such functions is explored for curve-fitting purposes. Sa-
tisfactory results are obtained for the fractional functions constructed by em-
ploying physically meaningful data. Future applications of these functions are 
likely to expand into wider domains. 

2. Polynomial Functions of Non-Integer Powers  

General form of a polynomial of non-integer powers can be written as 

( ) 0 11
0 1 1

n
n nP x a x a x a x aα αα

α
−

−= + + + +                 (1) 

where ,j ja α ∈  or   or irrational or transcendental. For covering all cases, 
the coefficients, ja , and especially powers, jα , may briefly be called as non-integer. 
Due to virtually unlimited possibilities a general treatment of (1) cannot be at-
tempted; therefore, relatively simple particular cases would serve well to embark 
on the subject. For instance, one may inquire the total number of roots of the 
following equations.  

2 35 2 1 21 0, 2 1 0x x x+ = + + =                    (2) 

Making the cases apparently more complicated the determination of all the 
roots of the below equations may be sought.  

1.23 5.71 0.481 0, 1 0x x x+ = + + =                    (3) 

Still more, we may question the differences in number of roots between the 
transcendental powers π and e and those of their truncated counterparts such as  

3.141 e 2.7181 0, 1 0; 1 0, 1 0x x x xπ + = + = + = + =         (4) 
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Further, roots of the following equations may be questioned.  
e 3.141 2.7180, 0i ix x i x x iπ + + = + + =                 (5) 

In this manner, we could easily go on proposing more and more complicated 
equations involving more terms and coefficients. However, as we would hardly 
make any progress by proceeding so, we are going to tackle with problems ame-
nable to treatment at least to some extent while making only some comments on 
those that can be treated partially, and finally avoid all those which are beyond 
our capability. Concerning the practical use of these types of functions we present 
some curve-fitting applications and thereby reveal the challenges lie in extending 
them to general multi-term forms defined in (1). 

3. Roots of Some Particular Functions of Non-Integer  
Powers 

Three different equations containing variables with non-integer powers are con-
sidered for demonstrating how the roots can be obtained. 

3.1. Example 1 

Let us seek the roots of the following fractional polynomial equation.  
5 2 1 0x + =                             (6) 

Different approaches to the solution of this problem are possible; two of these 
are presented here. We first use a very elementary approach as follows.  

( ) ( )5 2 2ln ln 1 ln ei kx ± ±π π = − =    

( )5 ln 2
2

x i kπ= + π  

( ) ( ) ( )2 2 2exp 2 cos 2 sin 2
5 5 5

x i k k i k   = + = + + +      
 π π π π π π  

 

(7) 

in which −1 in the natural logarithm is expressed as  
( ) ( ) ( )2e cos 2 sin 2i k k i k± ±π π = ± ± + ±π±π π π  with 0,1,2,k =   and then ± sign 

has been replaced by + sign here and hereafter without loss of generality. Note 
also that k is limited to 0,1,2,3,4k =  since the quintic roots are evaluated. The 
above method is of course identical to the usual way of evaluating the power or 
roots of a complex number. In this particular case the equation is simultaneously 
squared and its quintic roots are computed; that is, ( ) 2 5

exp 2kx i k= +  π π  for 
0,1,2,3,4k = . The corresponding numerical values are  

0 1 2

3 4

0.309017 0.951057 , 0.809017 0.587785 , 1 0
0.809017 0.587785 , 0.309017 0.951057

x i x i x i
x i x i
= + + = − − = + +

= − + = + −
  (8) 

Caution should be observed in rejecting apparently false roots such as 

2 1 0x i= + + . At first glance this root does not appear to satisfy Equation (6) but 
this is not the case. Square roots of 1 are +1 and −1 which correspond to 0k =  
and 1k =  modes respectively in  
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( ) ( ) ( ) ( )1 21 21 cos 0 2 sin 0 2 cos 0 sin 0k i k k i k= + + + = + + + π π π π . Taking  
1k =  for the second root we have 1 21 1= −  and consequently  
( )55 21 1 1= − = − , which does satisfy 5 2 1 0x + = . 

Obviously all the roots must be considered when dealing with fractional equa-
tions. To clarify this point visually for the present example two graphs of 

( ) 5 2
5 2 1P x x= +  are drawn together in Figure 1 by evaluating the square root in 
5 2x  positive 0k =  and negative 1k = . Note that for the latter case the func-

tion has a zero at 1x =  as computed. 
The second approach introduces a new variable 1 2u x=  so that (6) becomes  

5 1 0u + =                              (9) 

which has the roots ( ) 1 5
exp 2ku i k= +  π π  with 0,1, 2,3, 4k = :  

0 1 2

3 4

0.809017 0.587785 , 0.309017 0.951057 , 1 0
0.309017 0.951057 , 0.809017 0.587785

u i u i u i
u i u i

= + + = − + = − +

= − − = + −
  (10) 

Computing the solutions to (6) by employing 2
k kx u=  naturally renders the 

results given in (8). Note that according to this approach 2 1u = − , which makes 
it clear that we must select −1 as the appropriate root of +1 in 1 2

2
1

2
21u x= =  to 

satisfy the equation. Finally, reason for introducing this rather longer approach 
lies in its use in multi-term equations.  

3.2. Example 2  

Let us seek the roots of the following multi-term polynomial equation with frac-
tional powers.  

1 22 3 2 1 0x x+ + =                          (11) 

 

 
Figure 1. Graphs of ( ) 5 2

5 2 1P x x= +  as computed for the positive 0k =  

(red) and negative 1k =  (blue) root signs within the domain 0 2x≤ ≤ . 

https://doi.org/10.4236/apm.2021.1110053


S. Beji 
 

 

DOI: 10.4236/apm.2021.1110053 795 Advances in Pure Mathematics 
 

As we have more than one unknown term the second approach of Example 1 
is needed. Expressing the fractions under a common denominator gives  

4 6 3 62 1 0x x+ + =                        (12) 

Introducing a new variable 1 6u x=  transforms (12) to  
4 32 1 0u u+ + =                         (13) 

which may be shown to have the roots 0 1u = − , 1 1.839286752u = − , 

2 0.419643375 0.60629073u i= + + , and 2 0.419643375 0.60629073u i= + − . 
From 1 6u x=  we get 6x u=  and obtain the roots of (11) as  

0 1

2 3

1 0 , 38.7165505 0 ,
0.141724546 0.75781919 , 0.141724546 0.75781919

x i x i
x i x i
= + + = + +

= + − = + +
 (14) 

As in the first example the roots 0 1x = +  and 1 38.7165505x = +  give the 
false impression that they are not true solutions. The key point here hinges on 
taking the appropriate roots. Numerically, 1

0
1 2 21 1x = = −  and  

( )22 3 2 3 1 3 2
0 1 1 1 1x = = = =  hence 12 3 21 2 1 1 1 2 1 0+ ⋅ + = − + = . In exactly the 

same manner we can show that for 1 38.7165505x = +  we have  
( )1 22 338.7165505 2 38.7165505 1 11.44452497 2 6.22226249 1 0+ ⋅ + = + + ⋅ − + = . 

Likewise, for the other solutions 2 0.141724546 0.75781919x i= + −  and 

3 0.141724546 0.75781919x i= + + , the appropriate roots must be used. This is a 
somewhat ambiguous point without a strict rule as to which mode, 0k =  or 

1k = , should be selected for the root. At present, we may regard it a peculiarity 
of fractional equations. In summary, Equation (11) has four solutions altogether 
and to show that these solutions satisfy the equation the fractional powers 
must be computed for the appropriate mode, which is 1k =  for the square 
root and 0k =  for the cubic root in this case. Also, for a given set of x values 

( ) 2 3
3

1 2
2 2 1P x x x= + +  produces six different sets of values by separate use of 

three modes 0,1, 2k =  in evaluating the cubic root of 2 3x  and two modes 
0,1k =  for the square root of 1 2x . Hence, similar to Figure 1 of  
( ) 5 2

5 2 1P x x= + , multiple graphs can be drawn for ( )2 3P x . 
Finally, any kind of equation involving fractional powers of variables can be 

treated in the above manner. For instance, the equation 5.71 0.48 1 0x x+ + =  in 
(3) can be expressed in terms of fractions as 571 100 12 25 1 0x x+ + = . In order to 
get a solvable equation the denominators must be the same hence  

571 100 48 100 1 0x x+ + = . Defining the intermediate variable 1 100u x=  one gets the 
polynomial form 571 48 1 0u u+ + = , which at least in principle can be solved to 
obtain 571 roots of u and consequently the roots of 5.71 0.48 1 0x x+ + =  by em-
ploying 100x u= .  

3.3. Example 3  

In this example we essentially tackle with the problem of obtaining and examin-
ing roots of transcendental equation  

1 0xπ + =                             (15) 

which is going to prove to be a very interesting case. Let us first consider 
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3.1 1 0x + = , which may be viewed as an approximate form of (15). Expressing 
the exponent as fraction 31 10 1 0x + =  and introducing 1 10u x=  result in the 
polynomial 31 1 0u + =  with 31 roots. If we take one more decimal 3.14 1 0x + = , 
which gives rise to 157 1 0u + =  with 1 50u x=  and requires the determination 
of 157 roots. We may then conclude that increasing the number of digits to de-
fine π would increase the number of roots. Continuing in this line of reasoning 
we may infer that the process would figuratively lead to an equation with infinite 
number of roots since π is a transcendental number. Correctness of this naive 
deduction can be demonstrated in a simple way with quite interesting results. 
We take 1 0xπ + =  and proceed to solve it as done in the first example.  

( )2ln ln ei kx π+ ππ  =    

( )ln 2x i kπ π= + π  

( ) ( ) ( )exp 1 2 cos 1 2 sin 1 2kx i k k i k= + = + + +    

(16) 

where 0,1,2,k =  . We have thus shown that the πth roots of a complex num-
ber can be computed just like any integer roots as customarily done. Moreover, 
it is observed that there are infinite number of roots for transcendental numbers 
as conjectured above. The zeroth mode 0k =  gives 0 eix = , which, upon subs-
tituting into the original equation 1 0xπ + = , reveals no other than the famous 
Euler formula:  

e 1 0iπ + =                             (17) 

Also, the general solution renders infinitely many Euler formulas: 3e 1 0iπ + = , 
5e 1 0iπ + = , 7e 1 0iπ + = , etc., which correspond to 1,2,3,k =  . An interesting 

comparison is possible by making a crude approximation 3π  and compu-
ting the roots of 3 1 0x + =  as  

0 1 20.5000 0.8660 , 1.0000 0.0000 , 0.5000 0.8660x i x i x i= + + = − + = + −  (18) 

On the other hand, from (16) the roots of (15) for the first three modes 
0,1,2k =  are  

0 1 20.5403 0.8415 , 0.9899 0.1411 , 0.2837 0.9589x i x i x i= + + = − + = −  (19) 

Closeness of the corresponding roots in (18) and (19) are clearly visible in 
Figure 2 where the first three roots of 1 0xπ + =  and all three roots of 

3 1 0x + =  are plotted. 
Convergence of roots of relevant fractional functions to those of 1 0xπ + =  

can be further demonstrated. Computing the roots of 3.1 1 0x + =  and  
3.14 1 0x + =  give respectively, ( )10exp 1 2

31kx i kπ = +  
 for 0,1,2, ,30k =   

and ( )50exp 1 2
157kx i k = +  

π  for 0,1,2, ,156k =   as solutions. Table 1  

compares the numerical values of the first ten roots, 0,1,2, ,9k =  , with those 
of 1 0xπ + = . As expected the roots of 3.14 1 0x + =  are closer to 1 0xπ + =  
than 3.1 1 0x + = .  
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Figure 2. First three roots of 1 0xπ + =  (red) and all three 
roots of 3 1 0x + =  (blue). 

 
Table 1. First ten roots of 3.1 1 0x + =  (second column), 3.14 1 0x + =  (third column), 
and 1 0xπ + =  (fourth column). 

Mode 3.1 1 0x + =  3.14 1 0x + =  1 0xπ + =  

k ( )10exp 1 2
31kx i kπ = +  

 ( )50exp 1 2
157kx i k = +  

π  ( )exp 1 2kx i k= +    

0 0.52896 0.84864i+ +  0.53988 0.84175i+ +  0.54030 0.84147i+ +  

1 0.99487 0.10117i− +  0.99021 0.13961i− +  0.98999 0.14112i− +  

2 0.34731 0.93775i+ −  0.28609 0.95820i+ −  0.28366 0.95892i+ −  

3 0.68897 0.72479i+ +  0.75156 0.65966i+ +  0.75390 0.65699i+ +  

4 0.95414 0.29936i− +  0.91300 0.40796i− +  0.91113 0.41212i− +  

5 0.15143 0.98847i+ −  0.01001 0.99995i+ −  0.00443 0.99999i+ −  

6 0.82076 0.57127i+ +  0.90466 0.42614i+ +  0.90745 0.42017i+ +  

7 0.87435 0.48530i− +  0.76461 0.64449i− +  0.75969 0.65029i− +  

8 0.05065 0.99872i− −  0.26686 0.96373i− −  0.27516 0.96140i− −  

9 0.91896 0.39436i+ +  0.98721 0.15940i+ +  0.98870 0.14988i+ +  

 
We make some remarks concerning equations of the form 1 0xα + =  and 

their connection to the Euler formula. For instance, the roots of 1 0ix + =  are 
( )exp 2kx k= π+ π  where 0,1,2,k =  . Likewise, it is fairly simple to show that 

e 1 0x + =  has infinitely many solutions of the form ( )exp 2 ekx i k= +π π    
with 0,1,2,k =   since the ratio π/e is transcendental. All these solutions when 
substituted into their corresponding equations yield the Euler formula. This 
should be expected because the solution is initiated by expressing  

( )1 exp 2i k− = +π π   . 
While we have made good progress in the solution of polynomial equations 
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with terms of fractional powers and the special form 1 0xα + =  with transcen-
dental and imaginary powers, solution of the multi-term functions with tran-
scendental powers as given in (5) remains a challenging problem. 

4. Curve-Fitting Applications of Functions with  
Fractional Powers  

Curve-fitting to a given data is a possible application area for functions contain-
ing terms with fractional powers. A general form as in (1) might be considered; 
however, just as in the case of roots, a corresponding general approach does not 
seem possible. For this reason our treatment is again confined to few special 
cases with select data. 

A physically meaningful set of points, known as the righting moment lever or 
GZ values, which make up the most essential data representing a ship’s stability, 
is used for demonstrations. To establish a GZ φ−  curve quite complicated 
computations involving the underwater volume of a ship at definite heel angles 
φ , second moment of water plane area, etc. are necessary. Certain points of the 
GZ curve are particularly important for defining its characteristics. At the zero 
angle of heel normally GZ is zero and the first derivative of the GZ curve at zero 
angle is called the metacentric height GM. The maximum value of the righting 
lever is GZm and the vanishing angle of heel vφ  is the angle at which GZ be-
comes zero. 

All the curve-fitting examples here use the GZ data points computed for an 
actual design given in Table 2. The GZ values are normalized by GZm so that 

1.0mGZ = . The normalized metacentric height is  
( ) ( ) ( )0d 0 d 0.3182 0.0000 0.1745 0.0000 1.8235GM GZ GZφ φ= ∆ ∆ = − − = , 

and the vanishing angle from Table 2 is 1.2217 rad 70vφ = = . 

4.1. Example 1  

We begin by selecting a simple fractional function of the form  

( ) 0
0 1 2fGZ a a aαφ φ φ= + +                     (20) 

where 0a , 1a , 2a , and 0α  are constants to be determined by imposing cer-
tain conditions according to the data available in Table 2. 

First, we assume 0 0α >  and set 2 0a =  so that ( )0 0fGZ = . Next, requir-
ing ( )d 0 dfGZ GMφ =  and supposing 1 0α − >  give 1a GM= . At this stage 
it is obvious that α  must be a real quantity greater than unity. Naturally, there 
is no guarantee that the conditions imposed to determine 0a  and 0α  are  
 
Table 2. Dimensionless GZi data corresponding to heel angles iφ  (radians) computed 
for an actual design. 

i 1 2 3 4 5 6 7 8 

iφ  0.0000 0.1745 0.3491 0.5236 0.6981 0.8727 1.0472 1.2217 

iGZ  0.0000 0.3182 0.6834 0.8845 1.0000 0.8571 0.5135 0.0000 
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going to yield an 0 1α > , as required. The value of 0α  depends on the data 
points and in some cases it may not be possible to get 0 1α > . In this particular 
application we impose the conditions ( )f m mGZ GZφ =  and ( ) 0f vGZ φ = . It is 
emphasized that requiring only ( )f m mGZ GZφ =  does not make a true maxi-
mum at mφ ; for a true maximum ( )d d 0f mGZ φ φ =  must also be imposed as 
can be seen in the third example below. However, since only two free parameters 
are available in our present choice of fitting function we cannot impose more 
conditions. Then, making use of 2 0a =  and 1a GM= , and imposing 

( )f m mGZ GZφ =  and ( ) 0f vGZ φ =  to Equation (20) give  
0 0

0 0, 0m m m v va GM GZ a GMα αφ φ φ φ+ = + =             (21) 

Solving 0a  from the latter as 0
0 va GM αφ−= −  and using in the former with 

some straightforward manipulations give  

( )
( )0

ln
ln

m m v

m v

GM GZ GMφ φ
α

φ φ

 − =                  (22) 

which reveals that m mGM GZφ −  must be positive for a real 0α . It is also clear 
that getting an 0α  greater than unity depends on the numerical values of data.  

For comparison purposes we also use a third-degree polynomial  

( ) 3 2
0 1 2 3pGZ c c c cφ φ φ φ= + + +                   (23) 

Conditions imposed on Equation (20) are now applied to (23) so that 

2c GM= , 3 0c = , and  

( ) ( )

( ) ( ) ( )

0

1

,
1

1

m
m v

m m v

v m
m v m v

m m v

GZc GM

GZc GM

φ φ
φ φ φ

φ
φ φ φ φ

φ φ φ

 
= + − 

 
= − + + − 

           (24) 

For the data in Table 2 the numerical values of all the constants are computed 
as 0 3.75α = , 0 1.05a = − , 1 1.82a = , 2 0.00a =  and 0 1.78c = − , 1 0.68c = , 

2 1.82c = , 3 0.00c =  hence the fractional ( )fGZ φ  and polynomial ( )pGZ φ  
functions become  

( )
( )

3.75

3 2

1.05 1.82

1.78 0.68 1.82
f

p

GZ

GZ

φ φ φ

φ φ φ φ

= − +

= − + +
               (25) 

Note that 0 3.75α =  is greater than unity as required for this particular ap-
plication. Figure 3 depicts the curve-fittings given in (25) against the data 

( )iGZ φ  in Table 2. The polynomial function ( )pGZ φ  performs slightly bet-
ter since the true maximum of the fractional function ( )fGZ φ  is shifted to the 
right more compared to the polynomial; nevertheless, the general characteristics 
of both curves are quite similar.  

4.2. Example 2  

In this application the data and functional forms are kept the same but instead of 
satisfying the maximum point ( )m mGZ GZφ = , the least-squares method is  
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Figure 3. Data ( )iGZ φ  (black dots) against curve-fittings by fractional 

power ( )fGZ φ  (red) and polynomial ( )pGZ φ  (blue). 

 
employed in determination of constants both for the fractional and polynomial 
function. In this regard we enounce a hybrid approach in which besides satis-
fying definite points individually the entire data are utilized via the least- 
squares method. Skipping the parts in common with the first application we 
consider only the least-squares method as applied to the fractional function 

( ) 0
0fGZ a GMαφ φ φ= +  with the vanishing angle requirement  

0
0 0v va GMαφ φ+ = . Solving for 0a  and using it in the function result in  

( ) ( )0
f vGZ GM αφ φ φ φ= −                     (26) 

where vφ φ φ=  is defined for the simplicity of notation and 0α  is the only 
constant to be determined by employing the least-squares method with the data 
given in Table 2. For discreet data points the corresponding total squared error 
function is  

( ) 0

2
7

2
0

2

i
i i

i v

GZ
E

GM
αα φ φ

φ=

 
= − + 

 
∑                   (27) 

where iGZ  is an available data point corresponding to a definite iφ  value with 

i i vφ φ φ= . The first and last data points are already satisfied hence they are ex-
cluded from the least-squares application so that the running index i is from 2 to 
7. Differentiating (27) with respect to 0α  gives the equation to be satisfied for 
minimizing the total squared error  

( ) ( )0 0

2 7
0

20

2 ln 0i
i i i i

i v

E GZ
GM

α αα
φ φ φ φ

α φ=

∂  
= − + = ∂  
∑            (28) 

Obviously solving (28) for 0α  is not possible by conventional approaches. 
Therefore, we proceed by scanning the above function for a range of 0α  values 
with very small increments: 0 01.0 jα α= + ∆  with 1,2,3,j =   and 0α∆  in 
the range of, say, 10−2 - 10−5 to obtain a functional value as close as possible to 
zero. At the same time the value of the error function is computed for each 0α . 
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Figure 4 shows both the error function and its derivative in the range of 

01 5α≤ ≤  for the data of Table 2. Note that for approximately 0 3.39α =  the 
error function ( )2

0E α  makes a minimum while its derivative becomes zero 
( )2

0 0 0E α α∂ ∂ = . Once 0α  is determined 0a  is computed from  
01

0 va GM αφ −= −  while 1a GM=  and 2 0a =  as before. 0 3.39α =  is again 
greater than unity but nearly 10% less than the one computed in the first exam-
ple by the use of maximum point mGZ . The numerical values of the constants 
both for the fractional function and polynomial are obtained as 0 1.13a = − , 

1 1.82a = , 2 0.00a = , 0 3.39α =  and 0 1.62c = − , 1 0.49c = , 2 1.82c = , 

3 0.00c = . The corresponding fractional ( )fGZ φ  and polynomial ( )pGZ φ  
functions are  

( )
( )

3.39

3 2

1.13 1.82

1.62 0.49 1.82
f

p

GZ

GZ

φ φ φ

φ φ φ φ

= − +

= − + +
                (29) 

Figure 5 makes the same comparison as Figure 3 by using the equations in 
(29). For a consistent comparison the least-squares approach is employed for 0c  
of the polynomial function. The polynomial again performs somewhat better 
while the fractional power function differs only very slightly from the polynomi-
al.  

4.3. Example 3  

The last application increases the number of terms to satisfy more conditions 
hence produce a much better curve-fitting function.  

( ) 0 1
0 1 2 3GZ a a a aα αφ φ φ φ= + + +                   (30) 

The constants are to be determined by applying six different conditions:  
 

 
Figure 4. Total squared error ( )2

0E α  (red) and its derivative 

( )2
0 0E α α∂ ∂  (blue). 
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Figure 5. Data ( )iGZ φ  (black dots) against curve-fittings by fractional 

power ( )fGZ φ  (red) and polynomial ( )pGZ φ  (blue). 

 

( )0 0GZ = , ( )d 0 dGZ GMφ = , ( )m mGZ GZφ = , ( )d d 0mGZ φ φ = ,  
( ) 0vGZ φ = , and the total squared error for the iGZ  data 2, ,7i =   in Table 

2 is a minimum. The last condition, used in the preceding application as well, is 
essential here to avoid perfect symmetry in equations with respect to the terms 

0
0a αφ  and 1

1a αφ . Otherwise, the numerical scheme does not converge to a true 
solution as no preference can be made between these terms; that is, the numeri-
cal value of 0α  may well be consigned to that of 1α  and vice versa. 

After satisfying the first two conditions listed above the following equations 
are obtained for ( )m mGZ GZφ =  and ( )d d 0mGZ φ φ = :  

0 1

0 1

0 1
1 1

0 0 1 1 0
m m m m

m m

a a GM GZ

a a GM

α α

α α

φ φ φ

α φ α φ− −

+ + =

+ + =
                    (31) 

which ensure that the function has a true maximum at mφ . Solving for 0a  and 

1a  gives respectively  

( )

( )

0

1

1
0 1

1 0

1
1 0

0 1

1 1

1 1

m

m

GMa q

GMa q

α

α

α φ
α α

α φ
α α

−

−

= + −  −

= + −  −

                   (32) 

where ( )m mq GZ GMφ=  is defined for notational convenience. 0a  and 1a  
given in (32) are substituted into the fifth condition  

( ) 0 1
0 1 0v v v vGZ a a GMα αφ φ φ φ= + + =  and the resulting equation is used to ex-

press 1α  as  

( )
( )

01

0

0 0
1

1 1
1

q r r r
q r r

αα

α

α α
α

+ − − +  =
− +

                  (33) 

where v mr φ φ= . Similar to the second example we are going to seek an 0α  to 
make the total squared error minimum. To do so a scan is initiated for a range of 

0α  values in the manner 0 01.0 jα α= + ∆  with 1,2,3,j =   while 0α∆  is a 
small increment on the order of, say, 10−2 - 10−5. For a given 0α  Equation (33) 
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is used to obtain the corresponding 1α  value by successive iterations since 1α  
appears on both sides of (33). Once 1α  is determined then 0a  and 1a  can 
be computed from (32). Having thus obtained all the parameters needed the 
least-squares approach can be initiated by calculating the total squared error for 
the successive 0α  values  

( ) 0 1
7 22

0 0 1
2

i i i i
i

E GZ a a GZα αα φ φ φ
=

 = − − − ∑               (34) 

To avoid protracted algebra we do not attempt to derive ( )2
0 0d dE α α 1; in-

stead, numerically seek 0α  value that minimizes ( )2
0E α . Figure 6 shows the 

variations of ( )2
0E α  for small increments of 0α  in the range 1-3. For 

4
0 5 10α −∆ = ×  the numerically determined minimum is achieved at approx-

imately 0 2.30α =  which in turn gives 1 2.11α =  as determined from (33) by 
iteration with absolute error tolerance set to 10−4 between two successive itera-
tions. The other coefficients corresponding to these values are computed from 
(32) as 0 8.75a = −  and 1 7.62a = ; the last coefficient 2 1.82a GM= = . The 
fractional function satisfying all six conditions is then  

( ) 2.30 2.118.75 7.62 1.82GZ φ φ φ φ= − + +                 (35) 

It must be indicated that depending on the tolerance set for the iterative de-
termination of 1α  from Equation (33) the resulting 1α  value may show dif-
ferences; nevertheless, when all the rest of the parameters are computed accord-
ing to determined value the resulting curves deviate imperceptibly from one 
another. In other words, a perceptible difference in a parameter changes the  
 

 
Figure 6. Total squared error ( )2

0E α  as a function of 0α  and its 

numerically determined minimum. 

 

 

1Note that 0a , 1a , and 1α  are all functions of 0α  as given by (32) and (33) hence ( )2
0 0d dE α α  

becomes an extremely lengthy expression. 
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other parameters in such a way that the ultimate error is absorbed greatly to be-
come imperceptible. Indeed, from Figure 6, we see not a definite minimum at 
2.30 but a nearly constant region within the range 2.25 - 2.35 where the total er-
ror remains very low. The point 2.30 is the precise result of computation under 
set tolerances; however, use of any value between 2.25 and 2.35 produces vir-
tually the same curve, supporting the above argument. This interesting characte-
ristic of the squared error curve is observed for the last curve-fitting shown in 
Figure 8 too and presumed to be peculiar to fractional functions. 

Polynomial representations for this case had to be abandoned due to ex-
tremely cumbersome algebra required for dealing with a fifth-order polynomial. 
Such a serious difficulty should be taken as an indicator of the obvious advan-
tage of fractional functions for satisfying a number of conditions, six in this case. 

Figure 7 depicts Equation (35) against the data of Table 2. Agreement with  
 

 
Figure 7. Data ( )iGZ φ  (black dots) against curve-fittings by fractional 

power ( )fGZ φ  (red). 

 

 
Figure 8. Data ( )iGZ φ  (black dots) against curve-fittings by fractional 

power ( )fGZ φ  (red). 
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the actual data is remarkable, especially when compared with Figure 3 and Fig-
ure 5; note in particular that the maximum point of the curve coincides exactly 
with the data maximum. 

A more difficult curve-fitting with changing curvatures is done for a different 
data set ([10], p. 90) by imposing exactly the same conditions. Again, the data 
are normalized with respect to mGZ . The resulting function  

( ) 3.45 3.2049.47 46.16 0.83fGZ φ φ φ φ= − + +  is plotted against the corresponding 
data in Figure 8. The overall result is quite agreeable especially if allowances are 
made for the varying characteristics of the data.  

5. Concluding Remarks 

Polynomial functions composed of terms of non-integer powers are considered 
for developing methods to obtain their roots. Several representative cases ame-
nable to treatment are examined and some distinct properties of fractional and 
transcendental powers are revealed. Curve-fitting is recognized as a useful ap-
plication area of fractional functions and physically meaningful data are em-
ployed for computations with satisfactory results. New applications of these 
functions to diverse fields are likely to emerge in the future. 
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