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Abstract 

A variant of Fermat’s last Diophantine equation is proposed by adjusting the 
number of terms in accord with the power of terms and a theorem describing 
the solubility conditions is stated. Numerically obtained primitive solutions 
are presented for several cases with number of terms equal to or greater than 
powers. Further, geometric representations of solutions for the second and 
third power equations are devised by recasting the general equation in a form 
with rational solutions less than unity. Finally, it is suggested to consider neg-
ative and complex integers in seeking solutions to Diophantine forms in gen-
eral. 
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1. Introduction 

Diophantus (200-284), famed as the father of algebra, is known for his works on 
quadratic equations and puzzle-like algebraic problems such as finding numbers 
satisfying the condition that difference of the cubes of two numbers is equal to 
the sum of the cubes of two other numbers [1]. Fermat (1601-1665), quite famil-
iar with the works of Diophantus, posed several Diophantine problems, among 
them the special case of the last theorem that the sum of two cubes cannot be a 
cube. Concerning the last theorem Fermat’s note in the margin of his now lost 
copy of Diophantus’s Arithmetica that “To divide a cube into two other cubes, a 
fourth power or in general any power whatever into two powers of the same de-
nomination above the second is impossible, and I have assuredly found an ad-
mirable proof of this, but the margin is too narrow to contain it” has unques-
tionably been the most firing remark giving rise to hopes for a relatively simple 
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proof [1]. Thus, regardless of the complete rigorous proof of Wiles [2], works 
aiming at a simple proof of the theorem continue to be reported constantly as 
reviewed by Schorer [3]. There are several reasons to this unceasing interest; 
some obvious while others slightly hidden. First of all, the theorem has such 
charming qualities of being simple, elegant, and manageable appearance that 
anyone half interested in mathematics cannot but feel like being capable of toy-
ing with it to some good end. The fact that the complete proof had not come for 
centuries and when it did it came in hundreds of pages has not disheartened the 
initiated ones at all. A very recent outcome of such steadfast efforts is due to Nag 
[4] [5] who reported a neat and short proof of Fermat’s last theorem in a manner 
quite befitting to the general character of Diophantine equations. Of course, the 
proof is yet to stand against probable objections. 

On the other hand, this attractive and amusing challenge has not been un-
animously praised. Gauss (1777-1855), the most distinguished opponent, replied 
to Olbers in 1816 [1] that “I confess that Fermat’s Theorem as an isolated propo-
sition has very little interest for me, because I could easily lay down a multitude 
of such propositions, which one could neither prove nor dispose of.” Likewise, 
Hilbert (1862-1943) was not keen on working Fermat’s theorem as he explained 
why he was unwilling to do so [1]: “Before beginning I should put in three years 
of intensive study, and I haven’t that much time to squander on a probable fail-
ure.” 

The present work in some manner sides with these reserved views and rather 
than tackling with the original equation suggests first a generalized form and 
then presents numerically obtained solutions to this variant of Fermat’s last Di-
ophantine equation. Thus, the quest to prove insolubility is reversed to find the 
forms and conditions that provide solutions. Accordingly, cubes are partitioned 
into three cubes; fourth powers into five different fourth powers, etc. In some 
cases geometric representations of solutions are offered as well as some conjec-
tures concerning solubility of the general form for definite powers and terms. 

2. A Generalization of Fermat’s Last Theorem 

Fermat’s well-known last theorem states that the Diophantine equation  

1 2+ =n n nz z z                           (1) 

cannot be satisfied for positive integers 1 2, ,z z z  when 2>n . This theorem is 
generalized as follows. 

Theorem 1. The Diophantine equation 

1=
=∑

m
n n
i

i
z z                            (2) 

can have positive integer solutions , +∈iz z  only if ≥m n . The equation may 
not admit any solution at all for 6≥n  despite the condition ≥m n  being sa-
tisfied. 

The above theorem together with the statement concerning 6≥n  is a con-
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jecture without proof hence should be regarded unsettled as was the case of 
Fermat’s last assertion. Theorem 1 can be stated in a different form by allowing 
and admitting only rational solutions while restricting the solution domain be-
tween 0 and 1. Dividing (2) by nz  gives 

1
1

=

=∑
m

n
i

i
x                            (3) 

where =i i nx z z ’s are all positive fractions or quotients, ∈ix , confined to 
0 1< <ix . Accordingly, it is challenged to find rationals whose summation of 
the nth powers equals exactly to unity provided that ≥m n . The most impor-
tant advantage of Equation (3) is that it provides visual observations of the solu-
tions for 2= =n m  and 3= =n m  as demonstrated in §3 and §4, respectively. 

3. Second Power n = 2 with Two Terms m = 2 

We begin with the case for which the solutions are possible; namely, 2= =n m  
in (2) so that  

2 2 2
1 2+ =z z z                          (4) 

For this case the solutions can be written as 2 2
1 = −z k l  and 2 2=z kl  while 

2 2= +z k l , which represent all the primitive integer solutions or Pythagorean 
integer triples. Here, k and l are relatively prime and 0> >k l . It is obvious that 
infinitely many solutions can be produced from each primitive solution by mul-
tiplying that particular solution by different integers. 

Table 1 gives ten different primitive triples for 2 2 2
1 2+ =z z z  and corres-

ponding rational numbers satisfying 2 2
1 2 1+ =x x . Figure 1 depicts 1 2,x x  pairs 

of rationals satisfying 2 2
1 2 1+ =x x  as well as the pairs obtained by swapping 

1x ’s and 2x ’s. To give an example, both ( )1 23 5, 4 5= =x x  and  
( )1 24 5, 3 5= =x x  are plotted. Figure 1 is therefore symmetric about the line 
drawn at 45˚ to both axes. 
 

 

Figure 1. 1 2,x x  pairs of rationals (dots) satisfying 2 2
1 2 1+ =x x  as obtained from the in-

teger solutions of 2 2 2
1 2+ =z z z . 
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Table 1. Ten primitive solutions of 2 2 2
1 2+ =z z z  and corresponding rationals satisfying 

2 2
1 2 1+ =x x . 

i 2 2 2
1 2+ =z z z  2 2

1 2 1+ =x x  

1 2 2 23 4 5+ =  ( ) ( )2 23 5 4 5 1+ =  

2 2 2 25 12 13+ =  ( ) ( )2 25 13 12 13 1+ =  

3 2 2 28 15 17+ =  ( ) ( )2 28 17 15 17 1+ =  

4 2 2 29 40 41+ =  ( ) ( )2 29 41 40 41 1+ =  

5 2 2 212 35 37+ =  ( ) ( )2 212 37 35 37 1+ =  

6 2 2 213 84 85+ =  ( ) ( )2 213 85 84 85 1+ =  

7 2 2 228 45 53+ =  ( ) ( )2 228 53 45 53 1+ =  

8 2 2 236 77 85+ =  ( ) ( )2 236 85 77 85 1+ =  

9 2 2 239 80 89+ =  ( ) ( )2 239 89 80 89 1+ =  

10 2 2 220 99 101+ =  ( ) ( )2 220 101 99 101 1+ =  

 
Cases with more number of terms such as 1 3= + =m n , 2 4= + =m n , etc. 

have solutions too as anticipated. For instance, 2 2 2 21 4 8 9+ + = , 2 2 2 22 3 6 7+ + = , 
and 2 2 2 23 4 12 13+ + =  are just three primitive solutions of many more for 

3=m . Similarly, for 4=m  we have 2 2 2 2 21 2 4 10 11+ + + = ,  
2 2 2 2 22 3 8 38 39+ + + = , 2 2 2 2 23 4 8 44 45+ + + = , etc. It should be indicated that 

as m gets larger compared to n the number of primitive solutions within a given 
range of numbers gets more. For the same reason, while 4= =n m  case reveals 
no solutions, increasing m to 1 5= + =m n  results in a number of primitive so-
lutions as presented in §5. All such solutions can easily be obtained by a short 
and simple computer routine as given in the Appendix. 

4. Third Power n = 3 with Three Terms m = 3 

Setting 3= =n m  in Equation (2) gives 
3 3 3 3
1 2 3+ + =z z z z                        (5) 

A simple FORTRAN program given in the Appendix for 3= =n m  is em-
ployed to seek integers satisfying Equation (5). The first ten primitive solutions 
obtained from a search covering integers in the range 1 - 100 are listed in Table 
2. Thus, while it is not possible to express the cube of a whole number as a 
summation of two cubes, it can be expressed as a summation of three or more 
cubes. The corresponding rational solutions satisfying 3 3 3

1 2 3 1+ + =x x x  are also 
given. Using the rational solutions Figure 2 plots 1 2 3, ,x x x  triples on the cubic 
surface 3 3 3 1+ + =x y z . For a symmetric view 2 1 3, ,x x x  triples are plotted too.  
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Figure 2. Rationals 1 2 3, ,x x x  (dots) satisfying 3 3 3
1 2 3 1+ + =x x x  which correspond to the 

integer solutions of 3 3 3 3
1 2 3+ + =z z z z . Points obtained by swapping 1x  and 2x  values 

are also shown for a symmetric view. 
 
Table 2. Ten primitive solutions of 3 3 3 3

1 2 3+ + =z z z z  and corresponding rationals satis-

fying 3 3 3
1 2 3 1+ + =x x x . 

i 3 3 3 3
1 2 3+ + =z z z z  3 3 3

1 2 3 1+ + =x x x  

1 3 3 3 31 6 8 9+ + =  ( ) ( ) ( )3 3 31 9 6 9 8 9 1+ + =  

2 3 3 3 33 4 5 6+ + =  ( ) ( ) ( )3 3 33 6 4 6 5 6 1+ + =  

3 3 3 3 32 17 40 41+ + =  ( ) ( ) ( )3 3 32 41 17 41 40 41 1+ + =  

4 3 3 3 33 10 18 19+ + =  ( ) ( ) ( )3 3 33 19 10 19 18 19 1+ + =  

5 3 3 3 33 36 37 46+ + =  ( ) ( ) ( )3 3 33 46 36 46 37 46 1+ + =  

6 3 3 3 34 17 22 25+ + =  ( ) ( ) ( )3 3 34 25 17 25 22 25 1+ + =  

7 3 3 3 36 32 33 41+ + =  ( ) ( ) ( )3 3 36 41 32 41 33 41 1+ + =  

8 3 3 3 37 14 17 20+ + =  ( ) ( ) ( )3 3 37 20 14 20 17 20 1+ + =  

9 3 3 3 37 54 57 70+ + =  ( ) ( ) ( )3 3 37 70 54 70 57 70 1+ + =  

10 3 3 3 311 15 27 29+ + =  ( ) ( ) ( )3 3 311 29 15 29 27 29 1+ + =  

 
An interesting feature of primitive solutions is their clustering in a band of sur-
face region in the upper part of the cubic surface. 

Similar to the second power case, solutions are possible for the third power 
case when 4,5,= m . Some computational results are 3 3 3 3 31 5 7 12 13+ + + =  
and 3 3 3 3 32 3 8 13 14+ + + =  for 4=m  and 3 3 3 3 3 31 2 4 12 24 25+ + + + =  and 

3 3 3 3 3 32 3 5 51 76 83+ + + + =  for 5=m . 
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5. Fourth Power n = 4 with Four m = 4 and Five Terms m = 5 

Setting 4= =n m  in Equation (2) gives  
4 4 4 4 4
1 2 3 4+ + + =z z z z z                      (6) 

Running the program for 4= =n m  yields no primitive integer solutions for 
the range 1 - 150. The range could not be increased further due to restricted 
machine capability of operating large numbers. Nevertheless, from this particu-
lar and other computations we make a tentative inference that if no solution is 
found in the range 1 - 100 it is unlikely to be any solution at all. Accordingly we 
now increase the number of terms to 1 5= + =m n  so that  

4 4 4 4 4 4
1 2 3 4 5+ + + + =z z z z z z                    (7) 

for which the solutions are obtained by using the second program given in the 
Appendix. Table 3 lists ten primitive solutions of Equation (7) computed by 
trying first 100 integers. Corresponding rational quantities 1 2 3 4 5, , , ,x x x x x  sa-
tisfying 4 4 4 4 4

1 2 3 4 5 1+ + + + =x x x x x  are not given for this case as it is not possible 
to draw a 5-D graphic. 

6. Fifth Power n = 5 with Five m = 5 and Six Terms m = 6 

Setting 5= =n m  in Equation (2) results in  
5 5 5 5 5 5
1 2 3 4 5+ + + + =z z z z z z                    (8) 

The search program for 5= =n m  gives no primitive integer solutions for 
the range 1 - 50. Again, the range could not be increased more because of ma-
chine limits. On the other hand, increasing the number of terms to 6=m  and 
thus considering  

5 5 5 5 5 5 5
1 2 3 4 5 6+ + + + + =z z z z z z z                  (9) 

gives just two primitive solutions shown in Table 4 for the 50 integers that could  
 
Table 3. Ten primitive solutions of 4 4 4 4 4 4

1 2 3 4 5+ + + + =z z z z z z . 

i 4 4 4 4 4 4
1 2 3 4 5+ + + + =z z z z z z  

1 4 4 4 4 4 41 2 12 24 44 45+ + + + =  

2 4 4 4 4 4 41 8 24 36 38 45+ + + + =  

3 4 4 4 4 4 42 13 32 34 84 85+ + + + =  

4 4 4 4 4 4 44 21 22 26 28 35+ + + + =  

5 4 4 4 4 4 44 42 48 51 78 85+ + + + =  

6 4 4 4 4 4 46 48 66 67 78 95+ + + + =  

7 4 4 4 4 4 48 24 38 68 73 85+ + + + =  

8 4 4 4 4 4 48 33 56 92 98 115+ + + + =  

9 4 4 4 4 4 410 35 52 60 80 89+ + + + =  

10 4 4 4 4 4 412 18 24 27 42 45+ + + + =  
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Table 4. Two primitive solutions of 5 5 5 5 5 5 5
1 2 3 4 5 6+ + + + + =z z z z z z z . 

i 5 5 5 5 5 5 5
1 2 3 4 5 6+ + + + + =z z z z z z z  

1 5 5 5 5 5 5 54 5 6 7 9 11 12+ + + + + =  

2 5 5 5 5 5 5 515 16 17 22 24 28 32+ + + + + =  

 
be covered. Note that for a given range the number of primitive solution ob-
tained has decreased dramatically compared to the previous cases despite the in-
crease in the number of terms m. 

Searching solutions for 6=n  with 6,7,8,9=m  terms gave no results for 
integers in the range 1 - 28. Here, 28 was the largest integer the machine could 
handle in computing the sixth power cases. Similar numerical searches for 

7=n  likewise failed to produce any solution hence attempts for higher powers 
were abandoned. 

7. Concluding Remarks 

A generalized variant of Fermat’s last Diophantine equation is proposed by in-
creasing the number of terms m in accord with the power of terms n and a cor-
responding theorem is stated without proof. No primitive solutions could be 
found for <m n  as in the case for Fermat’s last theorem 2= <m n . Solutions 
become possible only if =m n  or >m n , as could be intuitionally expected. 
Equating =m n  is sufficient for ensuring integer solutions to the second and 
third power equations but 1= +m n  is needed for the fourth and fifth power 
equations. Geometric representations are presented for the cases 2= =n m  and 

3= =n m  by normalizing the equations and thus confining the solution domain 
between 0 and 1. Primitive solutions are determined numerically by scanning 
integers up to 100 and listed in tables. The new Diophantine equation divides a 
cube into three or more cubes, a fourth power into five or more fourth powers 
and a fifth power into six or more fifth powers. While the required number of 
terms m increases with increasing powers n for getting equations with solutions, 
the number of primitive solutions within a definite range gets smaller. There-
fore, with the aid of computations it is conjectured that after a certain power 

6≥n  there should be no solutions at all irrespective of the increase in the 
number of terms >m n . This is obviously just a surmise without any proof and 
therefore undecided. Finally, the ancient character of the Diophantine equations 
tacitly dictates only natural number solutions but it might be more interesting 
and rewarding to seek both positive and negative numbers and complex integers 
as well. 
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