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Abstract: A set of Boussinesq-type wave equations with enhanced dispersion characteristics is
presented for accurate, efficient, and robust numerical treatment. New arrangement uses three
different velocity variables simultaneously in order to keep continuity and momentum equations in
simplest conservation forms while improving the dispersion characteristics. This approach allows us
to retain all the nonlinear contributions with minimum number of terms. Spatial and time-dependent
variations of the seabed are fully accounted for and the effect of external free surface pressure is
included. A numerical scheme based on finite differences is developed, and various well-known
experimental cases are simulated for testing the performance of the proposed set of equations.
Comparisons of simulations with measurements reveal quite satisfactory agreements and, hence,
bolster confidence in the wave model.

Keywords: Boussinesq-type wave equations; waves over bathymetry; sea-quake-generated waves

1. Introduction

Current state-of-the-art wave modeling of nearshore regions prefers Boussinesq-type
equations for reliable results with less computational effort. Features such as nonlinear
effects, accurate linear shoaling due to water depth changes, and better dispersion charac-
teristics for relatively short wave propagation make Boussinesq models appealing.

Within the last three decades, in line with computational capabilities, considerable
progress has been made for improving Boussinesq-type wave equations. Witting [1]
was the first to introduce a highly dispersive and highly nonlinear Boussinesq model
by using exact continuity and momentum equations in connection with a “new velocity”
variable. Madsen, Murray, and Sørensen [2] added definite derivatives of zeroth-order
terms to Boussinesq equations to improve the dispersion characteristics. Subsequently,
Madsen and Sørensen [3] extended the same approach to spatially varying bottom case.
Nwogu [4] derived a set of Boussinesq equations using the “velocity at an arbitrary depth”
as the velocity variable instead of the conventionally used depth-averaged or still wa-
ter level or bottom velocity. The resulting equations have nearly identical dispersion
characteristics with those given in [1,2]. The arbitrary depth velocity used in [4] actually
corresponds to the new velocity variable of [1] but is physically meaningful. Beji and
Nadaoka [5] modified classical equations of Peregrine [6] by partial replacement technique
to obtain a Boussinesq set with improved dispersion characteristic while retaining the
conventional depth-averaged velocity. Madsen and Schäffer [7] presented Boussinesq equa-
tions with high-order dispersion and nonlinearity. Karambas and Memos [8] developed a
fully-dispersive Boussinesq model which could be used over slowly varying bathymetry.
Higher-order Boussinesq equations with applications to various cases were given in [9].
Klonaris, Memos, and Drønen [10] introduced an integrated Boussinesq model covering
various aspects of nearshore dynamics such as rip channels.

In addition to these theoretical advances, different numerical techniques have been
explored extensively. Walkley and Berzins [11] employed the finite element approach while
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Zhan, Li, and Wai [12] used finite differences and Eskilsson and Sherwin [13] applied
discontinuous Galerkin methods for the numerical solutions of Boussinesq-type equations.
Finite volume schemes for Boussinesq modeling of nearshore wave transformations were
developed by Zhou, Zhan, and Li [14]. Nonlinear wave–body interactions were treated
within the framework of a unified Boussinesq model [15] in the sense that the computational
domain is decomposed into two subdomains comprising a region below the body and
another outside of it. A different phenomenon, wave generation by a moving pressure
disturbance such as ships, was also simulated using Boussinesq models [16,17]. The
relatively difficult subject of inclusion of wave-breaking effect into Boussinesq models was
considered in quite a number of studies [18–25]. Kaur, Kumar, and Rajni [26] devised a
finite element method to investigate the performance of Boussinesq equations in semi-
enclosed basins. Quite recently, in a case study of wave propagation over coral reefs,
Watanabe et al. [27] revealed the limitations of Boussinesq-type wave models.

The present work introduces an unconventional approach and employs three different-
velocity variables for the purpose of establishing a set of prognostic equations containing
lowest-order derivatives and minimum number of terms. Thus, the framework, which is
established in line with the pioneering work of Witting [1], diverges substantially from
the typical Boussinesq models which are given in terms of a definite velocity variable.
Accordingly, the continuity equation is expressed in terms of averaged velocity while the
momentum equation is formulated in terms of undisturbed surface velocity. Further, in
order to produce a model with better dispersion characteristics, the averaged velocity is
not directly related to the surface velocity but is connected via an intermediate velocity
variable, which is the velocity at an arbitrary water depth. These kinematic equations
relating velocities treat the water depth as both a spatially and temporally varying quantity,
keeping all its derivatives without neglecting any term. The resulting set of equations then
provides a Boussinesq-type water wave model with improved dispersion characteristics
capable of advancing relatively shorter waves over a seabed which may vary in space and
time. More importantly, unlike the usual forms of improved Boussinesq-type equations
expressed in terms of a single velocity variable, the new arrangement does not contain any
third-order derivatives, which hinder accuracy and robustness of the numerical treatment.

For the numerical solution of the proposed equations, a computationally efficient
and accurate finite differences formulation is developed. The numerical scheme uses a
staggered grid system with two time-level variables. The entire set of equations is solved by
treating the x- and y-components in decoupled manner; hence, the scheme is iterated until
a preset accuracy condition is satisfied. Five different simulations are carried out to demon-
strate various aspects of the wave model, such as linear shoaling over spatially changing
depths, tsunami-like wave generation due to an impulsive bed movement, nonlinear wave
transformations, and combined refraction-diffraction over varying bathymetry. Except for
the shoaling simulation, which is tested against conservation of energy flux concept, all the
simulations are compared with the corresponding experimental measurements, which are
the most frequently used ones in the relevant literature. Overall, the results of simulations
agree well with the measurements, demonstrating the reliability of the proposed set of
equations.

2. Governing Equations
2.1. Continuity Equation

The depth-integrated continuity equation as expressed for a free surface flow bounded
below by a spatially and temporally varying bed is given by [28]

∂

∂t
(ζ + h) +∇ · [(ζ + h) ū] = 0, (1)

where ζ = ζ(x, y, t) is the free surface displacement, h = h(x, y, t) is the water depth, ∇
is the two-dimensional gradient operator, (∂/∂x, ∂/∂y), and ū is the vertically-averaged
horizontal velocity vector with x- and y-components (ū, v̄) only, and defined as ū =
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(ζ + h)−1
∫ ζ
−h u dz with u = u(x, y, z, t) being the horizontal velocity vector. Equation (1),

as expressed above in terms of the mean horizontal velocity, is exact.

2.2. Momentum Equation

An alternative form of momentum equation for irrotational nonlinear free surface
flows, which is exact, is given in [29]:

∂u
∂t

+∇
[

gζ +
∫ ζ

z

∂w
∂t

dz + 1
2 (uζ · uζ + w2

ζ) +
1
ρ ps

]
= 0, (2)

where ∂u/∂t and ∂w/∂t are, respectively, the time derivatives of the horizontal velocity
vector u(x, y, z, t) and vertical velocity component w(x, y, z, t), while uζ and wζ stand for
the indicated variables evaluated at the free surface ζ, and, finally, ps = ps(x, y, t) is the
externally applied surface pressure while ρ is the water density. Once the vertical depen-
dency of the velocity field is specified, the momentum equation of any depth-integrated
wave model, as in [28–30], may be obtained from (2). To proceed further, the z-dependence
of the velocity field must be specified. Following the Boussinesq approach, the velocity
variables are expanded in power series in z:

u(x, y, z, t) =
∞

∑
n=0

znun(x, y, t), w(x, y, z, t) =
∞

∑
n=0

znwn(x, y, t), (3)

where the terms u0 and w0 for n = 0 represent the horizontal velocity vector and the
vertical velocity component at the undisturbed still water level z = 0. Although used
conventionally without questioning, the use of velocities at z = 0 may be perplexing from
the physical point of view when wave troughs are considered. This, however, does not pose
a real problem as the introduction of these velocities is an entirely mathematical process
and actual physical existence of these velocities is immaterial.

In order for horizontal and vertical velocity expressions given in (3) to be admissible,
they must satisfy the kinematic conditions as represented by the continuity equation, irrota-
tionality condition, and bottom condition for a movable seabed Sb(x, y, z, t) = z + h(x, y, t):

∇ · u +
∂w
∂z

= 0,
∂u
∂z

= ∇w,

D
Dt

[z + h(x, y, t)] = w + ht +∇h · u = 0 on z = −h(x, y, t), (4)

in which D/Dt = ∂/∂t + u∂/∂x + v∂/∂y + w∂/∂z stands for the material derivative
operator and subscript t for partial differentiation with respect to time. After making use of
all the conditions stated in (4), the following expressions are obtained for the horizontal
velocity vector u and the vertical velocity component w:

u = u0 − z [∇ht + (∇2h) u0 + 2∇h (∇ · u0)]− 1
2 (z

2 + 2hz)∇(∇ · u0), (5)

w = −ht −∇h · u0 − (h + z)(∇ · u0), (6)

where the terms up to the second order are kept in u, while w contains only first-order
terms so that irrotationality condition, ∂u/∂z = ∇w, is fulfilled. Note that the bottom
movement velocity ht is directly transmitted to w. Intermediate steps of obtaining (5) and
(6) can be found in [28].

At this stage, Equations (5) and (6) can be directly substituted into (2) to obtain a mo-
mentum equation in terms of surface variables u0, uζ , and wζ , since the terms proportional
to z and z2 in u and w cancel each other out as a result of already imposed irrotationality
condition ∂u/∂z = ∇w. The substitution yields

∂u0

∂t
+∇

[
gζ + 1

2 (uζ · uζ + w2
ζ) +

1
ρ ps − ζ[htt +∇ · (hu0)t]− 1

2 ζ2(∇ · u0)t

]
= 0, (7)
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where the surface velocities uζ and wζ can be evaluated by letting z = ζ in Equations (5) and (6),
respectively. Except for temporal derivatives of h and surface pressure, Equation (7) is identical
to the one proposed in [29]; yet, it is not fully nonlinear simply because the velocity components,
(5) and (6), are necessarily truncated at a limited order. For a detailed explanation concerning
the order of nonlinearity, the reader is directed to Witting [1].

Experience shows that keeping all the nonlinear terms in (7) seriously hampers the
robustness of any numerical scheme; therefore, in accordance with the classical Boussinesq
approximations (see p. 53, [31]), the nonlinear terms proportional to the vertical velocity w
and terms involving products of derivatives are completely neglected:

∂u0

∂t
+∇

[
gζ + 1

2 (u0 · u0) +
1
ρ ps

]
= 0. (8)

Equations (1) and (8) can be used to establish a Boussinesq model, provided that u0
and ū are related to each other. Integrating Equation (5) from −h to ζ, dividing by the total
depth (h + ζ), and finally inverting the resulting equation to express u0 in terms of ū as
described in (p. 508) [32] give

u0 = ū− 1
2 (h− ζ)[∇ht + (∇2h) ū + 2∇h (∇ · ū)]− 1

2 [h
2 − 1

3 (h + ζ)2]∇(∇ · ū), (9)

which may be simplified to the usual form by omitting the nonlinear terms

u0 = ū− 1
2 h [∇ht + (∇2h) ū + 2∇h (∇ · ū)]− 1

3 h2∇(∇ · ū). (10)

Equations (1), (7), and (9) as a highly-nonlinear model or (1), (8), and (10) as a weakly-
nonlinear model make up a complete system that can be solved quite efficiently and
accurately by applying an appropriate numerical approach such as a finite difference
formulation. Momentum equation, (7) or (8), is first used to advance u0 to a new time
level. Using this newly computed velocity on the left side of (9) or (10) gives new time
level ū. Finite difference representation of (9) or (10), when treated separately for the x- and
y- directions, results in a tridiagonal matrix which can be solved very efficiently. Finally,
solving Equation (1) by employing the newly computed ū for the surface displacement
completes the cycle for a time step.

Instead of a single velocity variable, simultaneous use of two different velocities, ū
and u0, is the unusual aspect of the scheme just described. While the continuity equation
is expressed in terms of the mean velocity, the momentum equation is expressed in terms
of the still water level velocity. These two different velocities are then related through
a kinematic expression, Equation (9) or (10). The main advantage of this arrangement
is clearly in the conservation forms of Equations (1) and (7) or (8). More importantly,
continuity equation is exact with minimum number of terms when expressed in terms of the
mean velocity. Likewise, momentum equation, whether it be (7) or (8), contains minimum
number of terms when expressed in terms of the still water level velocity. Therefore, by
keeping the number of terms as few as possible and the order of derivatives as low as
possible, the numerical discretization errors are minimized. It must be emphasized that
preliminary use of irrotationality condition in the derivation of Equation (2) contributes
remarkably to the reduction of number of terms in the momentum equation, especially
when all the nonlinear terms are retained. Despite all these numerical advantages, both
these models, just like the standard Boussinesq model of Peregrine [6], remain weakly
dispersive. The next step then makes an improvement in this respect by introducing an
intermediate velocity to the system.

2.3. Intermediate Velocity Variable

Our aim now is to extend the dispersion properties of the wave model to relatively
deep waters; therefore, instead of following the scheme just described above, an inter-
mediate velocity variable is introduced. Accordingly, the velocity at an arbitrary water
depth is used as an intermediate in connecting the velocity at the still water level and the
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depth-averaged velocity. Specification of the arbitrary depth-level is performed in such
a manner as to obtain a better dispersion relation for the resulting wave equations. The
concept of “velocity at an arbitrary depth” was first introduced by Nwogu [4]; this concept
is, in essence, the same as the “new velocity” variable of Witting [1] but is quite meaningful
from the physical point of view.

Equation (5) expresses the horizontal velocity vector for any given depth z in terms
of the still velocity vector u0. Setting z to an arbitrary depth zα, yet to be specified, and
denoting the corresponding velocity variable by uα results in

uα = u0 − zα[∇ht + (∇2h) u0 + 2∇h (∇ · u0)]− 1
2 (z

2
α + 2hzα)∇(∇ · u0). (11)

By successive approximations, (11) can be inverted to express u0 as a function of uα:

u0 = uα + zα[∇ht + (∇2h) uα + 2∇h (∇ · uα)] +
1
2 (z

2
α + 2hzα)∇(∇ · uα), (12)

which relates the still water level velocity to the velocity at an arbitrary depth zα. Now,
using the above expression for u0 in Equation (5) gives, for the horizontal velocity vector u,

u = uα − (z− zα)[∇ht + (∇2h) uα + 2∇h (∇ · uα)]

− 1
2 [z

2 − z2
α + 2h (z− zα)]∇(∇ · uα). (13)

Integrating (13) from −h to ζ and then dividing by the total depth (ζ + h) yields

ū = uα +
1
2 (2zα + h− ζ)[∇ht + (∇2h) uα + 2∇h (∇ · uα)]

+ 1
2 [z

2
α + 2hzα + h2 − 1

3 (h + ζ)2]∇(∇ · uα), (14)

which, when ζ is neglected, reduces to the classical Boussinesq approach:

ū = uα + (zα +
1
2 h)[∇ht + (∇2h) uα + 2∇h (∇ · uα)]

+( 1
2 z2

α + hzα +
1
3 h2)∇(∇ · uα). (15)

Introduction of an intermediate velocity variable uα changes the dispersion properties
of the resulting equations. This point is demonstrated next.

2.4. Linear Dispersion Relationship of Wave Model

In order to obtain the linear dispersion relationship of the wave model corresponding to
the formulation with an intermediate velocity variable, ū as expressed in terms of uα in (15)
and u0 given by (12) are substituted into the linearized forms of (1) and (8), respectively.

∂ζ

∂t
+ h (∇ · uα) +

(
α + 1

3

)
h3∇2(∇ · uα) = 0, (16)

∂uα

∂t
+ g∇ζ + αh2∇(∇ · uα)t = 0, (17)

where the depth is assumed constant, while surface pressure is dismissed and the notation
α = 1

2 (zα/h)2 + (zα/h) is adopted as introduced by Nwogu [4]. Note that when expressed
in terms of a single velocity variable uα, the continuity equation contains a new term
with third spatial derivatives and likewise momentum equation has a term with second
spatial derivatives plus time derivative. The presence of these terms inevitably introduces
considerable numerical inaccuracies into any finite difference scheme. Moreover, unlike
Equation (1), the above continuity equation is not exact to all orders and, as such, gives rise
to further errors in computations.

Using ζ = ζ0 exp [i(ωt− kxx− kyy)] and uα = uα0 exp [i(ωt− kxx− kyy)] in (16) and
(17) results in
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ω −kxh +

(
α + 1

3

)(
k3

x + kxk2
y

)
h3 −kyh +

(
α + 1

3

)(
k2

xky + k3
y

)
h3

−gkx ω
(
1− αk2

xh2) −ωαkxkyh2

−gky −ωαkxkyh2 ω
(

1− αk2
yh2
)


 ζ0

uα0

vα0



=

 0
0
0

 (18)

in which ζ0 is the wave amplitude, uα0 and vα0 are the amplitudes of horizontal velocity
components, uα0 = uα0 i + vα0 j, ω is the cyclic wave frequency, kx = k cos θ and ky = k sin θ
are, respectively, x- and y-components of the wave number vector k = kxi + kyj, and
θ is the angle wave propagation direction makes with the x-axis. In order to have a
nontrivial solution for the matrix system of (18), the discriminant must vanish. Equating
the discriminant to zero yields the dispersion relationship corresponding to (16) and (17):

ω2

k2 = gh

[
1−

(
α + 1

3

)
k2h2

]
(1− αk2h2)

, (19)

where k2 = k2
x + k2

y. On the other hand, linear theory or the second-order Stokes theory
dispersion relationship is given by ω2 = gk tanh kh. Expressing tanh kh as a Maclaurin
series, dividing both sides by k2, and establishing the [2/2] Padé approximant [33] gives

ω2

k2 = gh

(
1 + 1

15 k2h2
)

(
1 + 2

5 k2h2) , (20)

which is correct up to and including O(k4h4). Comparing (19) and (20) reveals that α must
be −2/5 if they are to be identical. There are different ways of determining α such as
minimizing the error within a preset range; the approach adopted here is in accord with
the asymptotic expansions underlying behind Boussinesq theory and is therefore preferred.
Finally, setting α = −1/3 reduces (19) to the “standard” Boussinesq dispersion relationship
as well as making ū = uα in (15) so that the entire system becomes the classic Boussinesq
model of Peregrine [6]. Figure 1 depicts three different dispersion relations; namely, the
exact one according to linear theory c/

√
gh =

√
tanh kh/kh, the classic Boussinesq model

as described by Equation (19) for α = −1/3, and, finally, the improved Boussinesq model
corresponding to α = −2/5. Obviously, the improved model is a better approximation
to the exact expression over a much wider range in relative depth h/L. It is also noted
that all the improved Boussinesq models (Witting [1]; Madsen, Murray, and Sørensen [2];
Nwogu [4]; Beji and Nadaoka [5]) yield identical dispersion relations to the present one
when their parameters are specified in accordance with the [2/2] Padé approximant given
in Equation (20).

h / L

c
/

c s

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1
Exact

Classic Boussinesq

Improved Boussinesq

Figure 1. Exact (black line), classic Boussinesq (blue line) α = −1/3, and improved Boussinesq
(red line) α = −2/5 phase velocities as normalized by shallow water phase velocity cs =

√
gh for

relative depths 0.0 ≤ h/L ≤ 1.0.
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3. Numerical Formulation

In any numerical scheme, the conservation of mass is the primary factor for com-
putational accuracy; therefore, use of a continuity equation in exact conservation form
with minimum number of terms, as formulated in terms of the mean horizontal velocity
in equation (1), is amply justified. On the other hand, neglect of high-order nonlinear
contributions involving multiplication of derivatives in a momentum equation may be
justified by arguing that their beneficial effects are quite likely to be counterbalanced and
even exceeded by unavoidable numerical inaccuracies. Furthermore, since the sufficiency
of weakly nonlinear models for practical applications has been confirmed by the work of
Bonnefoy et al. [34], as re-iterated in Stiassnie [35], it is deemed quite adequate, at least for
the present purposes, to use Equation (8) instead of (7).

The numerical scheme begins by first obtaining new time level value of u0 for the
entire domain from the momentum Equation (8):

∂u0

∂t
+∇

[
gζ + 1

2 (u0 · u0) +
1
ρ ps

]
= 0. (21)

The next step uses newly computed u0 value on the left side of (12) for determining
corresponding uα via an implicit discretization:

u0 = uα + zα[∇ht + (∇2h) uα + 2∇h (∇ · uα)] +
1
2 (z

2
α + 2hzα)∇(∇ · uα). (22)

Then, the depth-averaged new time level velocity ū is computed from (15) with the
aid of newly obtained uα:

ū = uα + (zα +
1
2 h)[∇ht + (∇2h) uα + 2∇h (∇ · uα)] + ( 1

2 z2
α + hzα +

1
3 h2)∇(∇ · uα). (23)

At this point, it is worthwhile to indicate that the dispersion characteristics of the
model may be carried to higher levels by simply including higher-order terms in (22) and
(23) without making any other change in the scheme as remarked in [1]. Finally, ū is used
in the continuity equation,

∂

∂t
(ζ + h) +∇ · [(ζ + h) ū] = 0, (24)

to advance the surface displacement ζ to the new time level over the entire domain.
Here, this scheme is carried out by employing a finite difference discretization of the
equations as described next; however, other numerical techniques such as finite elements
or a combination of different approaches may, of course, be used.

3.1. Finite Difference Discretization of Equations

Finite difference discretization of equations is accomplished in a staggered-time and
staggered-grid system. Four time levels, t, t + ∆t/2, t + ∆t, and t + 3∆t/2, are used.
Horizontal velocity components (u, v) are computed at t and t + ∆t time levels while
surface displacements ζ, water depths h, and surface pressure values ps (if used) are
evaluated at t + ∆t/2 and t + 3∆t/2 time levels. Likewise, velocities are placed at different
grid points from surface elevations, as shown in Figure 2. Water depths and surface
pressure values are placed at the same grid points with surface elevations, although not
indicated in the figure. This grid system is slightly different from the Arakawa-C grid
(see p. 194, [36]) in the sense that surface elevations are located at the grid intersections
instead of the middle of cells. Such placing enables the introduction of wave field by
specifying surface elevations along the boundaries, which is essentially more convenient
than introducing the velocities. An alternative discretization based on the Arakawa-C
grid was also developed and tested. Results showed only slight differences; hence, due to
the advantage of direct feeding of the surface elevation along the incoming boundary, the
present scheme was adopted. Nevertheless, depending on the preferences, the Arakawa-C
grid system may confidently be used as an equally accurate and robust alternative.
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∆

∆

Figure 2. Staggered arrangement of surface displacements and velocities on the grid used for finite
difference approximation.

According to the numerical scheme outlining the x-component u0 of the horizontal
velocity vector u0 at the still water level for the new time level t + ∆t, uk+1

0i,j
, is computed

from the discretized x-momentum equation:

uk+1
0i,j
− uk

0i,j

∆t
+ g

ζk+1/2
i,j − ζk+1/2

i−1,j

∆x
+

uk+1
0i,j

(uk+1
0i+1,j
− uk+1

0i−1,j
) + uk

0i,j
(uk

0i+1,j
− uk

0i−1,j
)

4∆x

+
(vk+1

0i,j+1
+ vk+1

0i−1,j+1
)(vk+1

0i,j+1
− vk+1

0i−1,j+1
) + (vk+1

0i,j
+ vk+1

0i−1,j
)(vk+1

0i,j
− vk+1

0i−1,j
)

8∆x

+
(vk

0i,j+1
+ vk

0i−1,j+1
)(vk

0i,j+1
− vk

0i−1,j+1
) + (vk

0i,j
+ vk

0i−1,j
)(vk

0i,j
− vk

0i−1,j
)

8∆x

+
1
ρ

pk+1/2
si,j − pk+1/2

si−1,j

∆x
= 0, (25)

where subscripts i and j are multipliers of spatial increments ∆x and ∆y in the x- and
y-directions, respectively. Superscript k denotes the time level multiplying ∆t, the time
step. In Equation (25), only the first term uk+1

0i,j
appearing in time derivative is considered as

unknown; all the other new time velocities are treated as known. Thus, (25) is used to solve
uk+1

0i,j
values explicitly along all the x-directions for the entire domain. Note that both the

surface elevation and pressure are evaluated at mid-time steps according to the staggered
time arrangement. Hence, the scheme decouples the x- and y-directions completely and
uses an iterative approach in time. Computational trials revealed that three time iterations
guarantee four decimal places of accuracy between the third and fourth iteration for all the
simulations presented in this work.

A discretized form of y-momentum equation for computing vk+1
0i,j

values can fairly
easily be obtained from (25) by interchanging the velocity variables, indices, and spacial
increments with their counterparts. For instance, uk+1

0i+1,j
would be vk+1

0i,j+1
, while vk+1

0i−1,j+1
would

be uk+1
0i+1,j−1

, and, more specifically, (pk+1/2
si,j − pk+1/2

si−1,j )/∆x would be (pk+1/2
si,j − pk+1/2

si,j−1 )/∆y
in the y-sweep discretization. In order to avoid repetition, the y-direction discretization is
omitted. The next stage is to compute uα values by the use of Equation (22):
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uk+1
0i,j

= uk+1
αi,j

+ βh
[

hxt + (hxx + hyy)uk+1
αi,j

]
+2βhhx

(
uk+1

αi+1,j
− uk+1

αi−1,j

2∆x
+

(vk+1
αi,j+1
− vk+1

αi,j
) + (vk+1

αi−1,j+1
− vk+1

αi−1,j
)

2∆y

)
(26)

+αh2

[
uk+1

αi+1,j
− 2uk+1

αi,j
+ uk+1

αi−1,j

∆x2 +
(vk+1

αi,j+1
− vk+1

αi,j
)− (vk+1

αi−1,j+1
− vk+1

αi−1,j
)

∆x∆y

]
,

where

h =
hk+3/2

i,j + hk+3/2
i−1,j + hk+1/2

i,j + hk+1/2
i−1,j

4
,

hx =
(hk+3/2

i,j − hk+3/2
i−1,j ) + (hk+1/2

i,j − hk+1/2
i−1,j )

2∆x
(27)

hxt =
(hk+3/2

i,j − hk+3/2
i−1,j )− (hk+1/2

i,j − hk+1/2
i−1,j )

∆x∆t

hxx =
(hk+3/2

i+1,j − hk+3/2
i,j − hk+3/2

i−1,j + hk+3/2
i−2,j ) + (· · · )k+1/2

4∆x2 .

The parentheses (· · · )k+1/2 in hxx stand for the same contents as the preceding one
but for water depths at the time level k + 1/2. The term hyy can be written down from hxx
by interchanging the indices as explained after Equation (25). The parameter β is defined
as β = zα/h =

√
1 + 2α− 1 or α = 1

2 β2 + β. For α = −2/5, β ≈ −0.5528, indicating that
the velocity used is nearly at mid-depth: zα/h = −0.5528.

uk+1
0i,j

’s on the left of (26) are already computed from (25) and vk+1
αi,j

’s are treated as

known so that for a single x-direction, i = 1, 2, · · · , n, the unknown uk+1
αi,j

values on the
right of (26) constitute a tridiagonal matrix system which can be solved very efficiently
by a double-sweep Thomas algorithm at each time step. An important feature of (26)
together with (27) is the inclusion of all the spatial and temporal derivatives of water depth;
accordingly, possible time-dependent movements of the seabed due to sea-quakes are
accounted for, and the so-called mild slope approximation is not adopted.

For the y-sweep, the corresponding discretization can be established from (26) in
exactly the same way as described above for the y-momentum equation. Being an implicit
discretization, this stage of computations renders the entire numerical scheme implicit,
hence making it possible to use relatively larger time and spatial steps compared to explicit
schemes. The next step is the computation of ūk+1

i,j from (23), as follows.

ūk+1
i,j = uk+1

αi,j
+ (β + 1

2 )h
[

hxt + (hxx + hyy)uk+1
αi,j

]
+2(β + 1

2 )hhx

(
uk+1

αi+1,j
− uk+1

αi−1,j

2∆x
+

(vk+1
αi,j+1
− vk+1

αi,j
) + (vk+1

αi−1,j+1
− vk+1

αi−1,j
)

2∆y

)
(28)

+(α + 1
3 )h

2

[
uk+1

αi+1,j
− 2uk+1

αi,j
+ uk+1

αi−1,j

∆x2 +
(vk+1

αi,j+1
− vk+1

αi,j
)− (vk+1

αi−1,j+1
− vk+1

αi−1,j
)

∆x∆y

]
,

in which the terms involving water depths are evaluated exactly as formulated in (27).
The terms on the right side of (28) are all known or treated as known; therefore, ūk+1

i,j ’s are
obtained easily after evaluating the terms on the right.

The preceding steps are repeated for the y-direction equations; thus, provisional
values of ūk+1

i,j and v̄k+1
i,j are obtained for the entire domain. At the final stage, the continuity

equation is used to solve for the new time level surface displacements:
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ζk+3/2
i,j − ζk+1/2

i,j

∆t
+

hk+3/2
i,j − hk+1/2

i,j

∆t

+
(hk+3/2

i,j + hk+1/2
i,j + ζk+3/2

i,j + ζk+1/2
i,j )

2

 ūk+1
i+1,j − ūk+1

i,j

∆x
+

v̄k+1
i,j+1 − v̄k+1

i,j

∆y


+
(hk+3/2

i+1,j − hk+3/2
i−1,j + hk+1/2

i+1,j + hk+1/2
i−1,j + ζk+3/2

i+1,j − ζk+3/2
i−1,j + ζk+1/2

i+1,j − ζk+1/2
i−1,j )

4∆x

·
(ūk+1

i+1,j + ūk+1
i,j )

2
(29)

+
(hk+3/2

i,j+1 − hk+3/2
i,j−1 + hk+1/2

i,j+1 + hk+1/2
i,j−1 + ζk+3/2

i,j+1 − ζk+3/2
i,j−1 + ζk+1/2

i,j+1 − ζk+1/2
i,j−1 )

4∆y

·
(v̄k+1

i,j+1 + v̄k+1
i,j )

2
= 0.

Entire computations, x-sweep, y-sweep, and continuity are iterated for accurate results.
As indicated previously, based on simulation trials, three iterations are observed to be
sufficient for reaching four decimal places of agreement between the third and fourth
iterations for all variables.

3.2. Treatment of Boundaries

Three different boundary conditions are used in the simulations presented here: in-
coming boundary condition, where incident wave field is introduced, outgoing boundary
condition, where wave field radiates out without being reflected back, and wall boundary
condition on both sides of the domain along the x-axis, which is taken as the main propaga-
tion wave direction. Simulation of waves generated by a sudden bottom movement is an
exception, where radiation condition is used at the incoming boundary too, and waves are
generated by an upthrust of the bed in a definite limited region within the domain.

At the incoming boundary, wave field is introduced by specifying the surface elevation
at the new time level just before solving the continuity equation. For sinusoidal waves,

ζk+3/2
0,j = ζ0 sin (ωk∆t), (30)

where ζ0 is the incident wave amplitude, ω = 2π/T the cyclic wave frequency correspond-
ing to the period T, ∆t the time step, j = 0, 1, · · · , m the running index in the y-direction,
and k = 0, 1, 2, · · · the running index denoting time level. Running index k should not
be confused with the wave number k used in (19) and (20). If the incident waves are not
sinusoidal they can be introduced by specifying the appropriate function.

At the outgoing boundary, one-dimensional linear wave equation ut + cxux = 0
admitting the solution u = u0 sin (ωt− kxx) for waves moving in the positive x-direction
is used. Here, cx = ω/kx is the wave celerity component in the x-direction. The discretized
form of the equation is

(uk+1
n,j − uk

n,j) + (uk+1
n−1,j − uk

n−1,j)

2∆t
+ cx

(uk+1
n,j − uk+1

n−1,j) + (uk
n,j − uk

n−1,j)

2∆x
= 0, (31)

where n denotes the last node number in the x-direction and j = 0, 1, · · · , m, with m being
the last node number in the y-direction. Note that time and space derivatives are both
centered at k + 1/2 and n− 1/2.

In case the radiation condition is not used at a free boundary, the discretization is
performed by one-sided finite differences approximation. For instance, if the waves are to
freely cross a left-side boundary, the discretization of u(∂u/∂x) is performed as follows:
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(
u

∂u
∂x

)
1,j

= uk
1,j

(−3uk
1,j + 4uk

2,j − uk
3,j)

2∆x
. (32)

Finally, wall condition requires that the velocities normal to the wall be zero; namely,
uk

1,j = 0, uk
n,j = 0, vk

i,1 = 0, or vk
i,m = 0, depending on the boundary where wall condition is

applied. For the surface elevation, the wall condition is satisfied by considering a mirrored
image of the free surface such that ζx = 0 or ζy = 0. Accordingly, on the outgoing boundary
n, j with j = 0, 1 · · · , m, ζx = 0 is implemented as

(
∂ζ

∂x

)
n,j

=
ζk

n+1,j − ζk
n−1,j

2∆x
= 0, (33)

which results in ζk
n+1,j = ζk

n−1,j hence ζk
n+1,j is thus determined and can be used to evaluate

the derivatives wherever appropriate. Elaboration of other possible boundary conditions
in detail is beyond the main scope of this work and therefore not attempted.

4. Simulations

Five different simulations are carried out by the use of the numerical scheme proposed
for the wave propagation model developed here. The first simulation serves three different
purposes: to check the ability of the wave model to simulate wave amplitude variations
over varying bathymetry, and to test the performance and resolution dependence of the
numerical scheme.

4.1. Wave Propagation over Varying Depths

In practical applications of nearshore wave models, the ability to accurately compute
linear wave shoaling is of primary importance, as exploited in detail in [37,38]. This
simulation accordingly considers a sinusoidally varying depth in the x-direction, which
is taken as the main wave propagation direction. The x-dependent water depth is then
defined as

h(x, y) =
1
2
[(ho + hm)− (ho − hm) cos (2π(x− xl − 1/2))], (34)

where ho = 10 m is the water depth at the beginning of domain x = 0 m, hm = 5 m is the
mid-domain water depth, and xl = 500 m is the entire domain length in the x-direction.
The bottom topography is depicted in Figure 3.

x / xl

h
/

h
o

0 1
0

1

Figure 3. Sinusoidal variation of bottom (black) according to Equation (34) and still water level (blue).
Vertical axis normalized by water depth ho = 10 m at x = 0 m and horizontal axis by total domain
length xl = 500 m.

Incident waves are sinusoidal with period T = 6 s and a very small amplitude
a0 = 1/1000 m to ensure linearity. Although the case is unidirectional, simulations were
carried out for two dimensions with domain width yl = 100 m and run for 100 periods so
that the efficiency of numerical radiation boundary could be tested as well.

Figure 4 shows two cases for different dispersion parameters, both using N = 30
resolution, as described below. Envelopes are drawn by computing wave amplitude a from
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the constancy of energy flux a2Cg = const., where Cg is the group velocity according to
linear theory. The graph at the top is the improved dispersion case α = −2/5, while the
bottom is the standard Boussinesq model α = −1/3. Since incident wave field is relatively
short, ho/L = 1/4, performance of the classic model is inferior.
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Figure 4. Normalized surface elevation (black) and conservation of energy flux envelope (red) for
improved α = −2/5 (top) and classic model α = −1/3 (bottom).

More simulations were carried out for five different resolutions with N = 20, 30, · · · , 60
by setting ∆x = L/N and ∆t = T/N so that the Courant number Cr = Cp(∆t/∆x) was
unity for every case, although it was not required for numerical stability. Here, L is
the mean wavelength computed by taking the average of incoming and mid-channel
values, T is the wave period, and Cp = L/T is the phase celerity. Each simulation was
carried out for 100 wave periods. In this way, the sensitivity of the numerical scheme to
the adopted resolution could be tested by comparing the observed maximum difference
with the corresponding exact value obtained from the constancy of energy flux concept.
Figure 5 depicts the maximum relative error percentages for each N as computed from 100 ·
(Max.Diff./Exact value), while the curve is a power fit to these points. Error percentages
decrease in an asymptotic manner and indicate a robust convergence of numerical results
to true values.
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Figure 5. Maximum relative error percentages (red circles) for different resolutions N and power fit
(black line) to these values.

4.2. Waves Generated by Bottom Movement

Hammack [39] studied tsunami generation and propagation by theoretical and ex-
perimental means. In particular, the experiments conducted in a wave tank fitted with
a bottom wave generator are quite valuable for testing the performance of wave models.
Here, measured wave profiles generated by an impulsive upthrust of a bed unit located
at the upstream end of the tank are compared with numerical simulations performed by
specifying the temporal change of water depth in accordance with the experiments.

h(x, y, t) = ho
[
1− (hb/ho)(1− e−at)H(x− lb)

]
, (35)

where ho is the still water depth, hb the height of bed upthrust, a the exponential time
decay coefficient, lb the total length of moving bed segment, and H the Heaviside step
function. Accordingly, at time t = 0, the bed segment lb impulsively begins its upward
motion with a nonzero velocity, ahb, and reaches its maximum height hb with exponentially
decaying velocity. To quantify the relative rapidness of bed motions, Hammack [39]
defined a time-size ratio tc

√
gh0/lb, with tc being the characteristic time indicating the

duration of bed motion. Accordingly, tc
√

gh0/lb � 1 denotes impulsive bed motions,
tc
√

gh0/lb ≈ 1 transitional bed motions, and tc
√

gh0/lb � 1 creeping bed motions. With
these definitions, the experimental case considered here has the following generation
parameters: ho = 0.05 m, hb/ho = 0.1, lb/ho = 12.2, tc

√
gh0/lb = 0.148, and a = 1.11/tc,

so that the bed segment lb rises to the height 2hb/3 in tc seconds and continues its rise
exponentially at the same rate to hb. Figure 6 shows the rise of bed segment for three
different instants, t = tc/2, tc, 10tc. hbt denotes the instantaneous height of the bed segment
while xl stands for the total length of the wave tank in the x-direction. Moving bed segment
is drawn in the middle of the tank for clear visualization, although in the experiments it is
placed at the upstream.

Numerical simulation was carried out with a temporal resolution ∆t = 0.05 s and spa-
tial resolution ∆x = 0.035 m in the x-direction; thus, the Courant number Cr = Cp(∆t/∆x)
was unity for shallow water phase celerity Cp =

√
gh0 ≈ 0.7 m/s. Since this simulation is

numerically 1-D (physically 2-D), both the tank width yl and ∆y were arbitrarily selected as
1 m. Figure 7 compares the computed wave forms with experimental measurements at four
different locations (a) at the outer edge of the moving bed segment x = lb, (b) at 20 water
depths downstream x = lb + 20h0, (c) at 180 water depths downstream x = lb + 180h0,
and (d) at 400 water depths downstream x = lb + 400h0. For the first two stations, the
wave model performs quite well both in terms of wave profile and the phase. Farther
downstream, the third station still shows a good profile agreement despite a phase mis-
match, which was rectified by taking the station location as x = lb + 176h0 instead of
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x = lb + 180h0. The last station exhibits both profile and phase discrepancies; again, the
phase discrepancy was removed by setting x = lb + 389h0 instead of x = lb + 400h0 for
the station location. Phase shifts of the last two locations were introduced to allow clear
comparisons of wave forms. The most likely reason for these phase mismatches is bottom
friction, as the depth ho = 0.05 m is very shallow. Exactly the same problem was observed
in the numerical simulations of Hammack [39], who attributed these mismatches possibly
to “the presence of viscous energy losses and boundary stresses in the experiments”.

x / xl

h
b

t
/

h
b

0 1
0

1

t=(1/2) t
c

t=t
c

t=10 t
c

Figure 6. Time-dependent movement of the bed shown for three different instants: t = tc/2 (green),
t = tc (blue), and t = 10tc (red). Vertical axis normalized by maximum bed upthrust hb and horizontal
axis by total wave tank length xl.

4.3. Nonlinear Wave Propagation over a Submerged Bar

Nonlinear wave propagation over a submerged trapezoidal bar for regular and irregu-
lar waves was investigated both experimentally and numerically [40,41]; the measurements
were used for testing relevant numerical schemes. Due to shoaling and harmonic gen-
eration over the up-slope and horizontal crest of bar and subsequent de-shoaling with
harmonic decomposition, these experiments pose challenging cases to test the linear and
nonlinear shoaling as well as dispersion characteristics of wave models. Among several
sets of measurements, sinusoidal waves with period T = 2 s and incident wave height
H = 2.0 cm are considered here; all the details concerning experimental setup, a sketch
of bottom topography, and measurement locations can be found in [41]. Water depth
variations along the wave flume are defined by

h(x, y) = 0.4 if 0.0 ≤ x ≤ 6.00,

h(x, y) = 0.4− (x− 6.00)/20 if 6.00 ≤ x ≤ 12.00,

h(x, y) = 0.1 if 12.00 ≤ x ≤ 14.00, (36)

h(x, y) = 0.1 + (x− 14.00)/10 if 14.00 ≤ x ≤ 17.00,

h(x, y) = 0.4 if 17.00 ≤ x ≤ 18.95,

h(x, y) = 0.4− (x− 18.95)/25 if 18.95 ≤ x ≤ 28.95,

where all the quantities are in meters. Computations were carried out by setting ∆t = 0.039312 s,
which corresponded to approximately 25 Hz sampling rate of records, and ∆x = 0.08 m so
that the Courant number at the incoming boundary was Cr = Cp(∆t/∆x) ≈ 0.9, which
proved to be a very good choice for satisfactory results. Figure 8 shows time domain surface
profiles as measured and computed for the last 5 periods of a total 20-period run at six
different gauge locations. Time series recorded by Gauge 1 was directly used to feed the
incident wave profile into the numerical model and is not shown. For all six gauges, the
simulated profiles agree very closely with the measured ones.
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Figure 7. Downstream surface profiles of Hammack’s measurements (red circles) and numerical sim-
ulation (black line) for an impulsive bed upthrust. (a) At the edge of bed unit (x − lb)/h0 = 0,
(b) 20 water depths downstream (x − lb)/h0 = 20, (c) 180 water depths downstream
(x− lb)/h0 = 180, and (d) 400 water depths downstream (x− lb)/h0 = 400.

4.4. Nonlinear Wave Convergence over a Topographical Lens

Whalin [42] conducted experiments of nonlinear wave convergence in a wave basin
of 84 ft = 25.6 m length and 20 ft = 6.096 m width over a topographical lens built by
evenly spaced semicircular steps. As waves propagate over the topography, they converge
along the midline of the tank and their amplitudes increase. Waves then become nonlinear
and give rise to higher harmonics which evolve with distance. Experiments provide
measurements of primary wave and harmonic amplitudes along the midline of the tank for
several locations. All the details can be found in [42]. Equations describing the bathymetry
are given by
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h0 = 0.4572; f (y) = [y(6.096− y)]1/2,

h(x, y) = h0 + [10.67− f (y)− x]/25 if 10.67− f (y) ≤ x ≤ 18.29− f (y),

h(x, y) = 0.1524 if x ≥ [18.29− f (y)], (37)

where all the quantities are in meters. Experiments simulated here are regular waves with
periods T = 1, 2, and 3 s and corresponding incident wave amplitudes a0 = 1.95, 0.75, and
0.68 cm in water depth of h0 = 0.4572 m at the incoming boundary. All the simulations
were carried out with a spanwise discretization ∆y = W/32, where W = 6.096 m is the
tank width. Time and x-direction resolutions were set to ∆t = T/40 and ∆x = Lm/40,
with Lm being the mean wavelength in the domain so that the mean Courant number was
unity. It is emphasized, however, that making the Courant number unity is not a stability
requirement; it is merely performed to minimize possible phase errors. Simulations were
carried out for 40 wave periods for T = 1 s waves, 20 periods for T = 2 s, and 12 periods
for T = 3 s so that a fully developed wave field could be established for each case.
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Figure 8. Measurements (black) of nonlinear wave evolution over a submerged bar and corresponding
numerical simulations (red) for six different wave gauge locations.

Figure 9 shows the bathymetry and perspective view of simulated waves for the
T = 1 s case. Figure 10 compares measurements and computed values for the primary
wave and its harmonics for T = 1, 2, and 3 s waves from top to bottom. Harmonic ampli-
tudes were computed by Fourier transforming time series of simulated surface elevations
for the last three periods for each case. While overall agreement of computations with
measurements are quite good for the T = 1 s case, discrepancies observed for the second
and third harmonics of the T = 2 s case are pronounced. The T = 3 s case renders a barely
acceptable agreement. These relatively poor performances observed for the latter cases
cannot be attributed to a definite reason; however, the step-like construction of the experi-
mental bottom topography might have played a role, especially when the wide scatter in
measurements is considered. It should also be pointed out that such disagreements are
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not specific to the present wave model; similar drawbacks are observed for other studies
reported in the literature.

Figure 9. Bathymetry and simulated view of the fully developed numerical wave tank for the T = 1 s
case of Whalin [42]. Axes are omitted due to different vertical scales for bathymetry and wave field.

4.5. Combined Refraction–Diffraction over an Elliptic Shoal

Combined effects of refraction and diffraction on a moderately nonlinear wave field
were investigated via experimental measurements and wave model predictions by Berkhoff,
Buoy, and Radder [43]. Experiments were carried out at a basin of 25 m length and 20 m
width for obliquely shoaling bottom topography and obliquely oriented elliptic shoal,
which made a 20° angle with incident wavefronts. Waves at the seaward boundary had
an amplitude to water depth ratio of a0/h0 = 0.05155 with water depth h0 = 0.45 m and
period T = 1 s. Mathematically, the bottom topography is defined as

x̄ = (x− 10) cos 20o − (y− 10) sin 20o

ȳ = (x− 10) sin 20o + (y− 10) cos 20o

s(x̄, ȳ) = (x̄/3)2 + (ȳ/4)2 (38)

h(x, y) = 0.4572− (x̄ + 5.84)/50 if x̄ ≥ −5.84

h(x, y) = 0.4572− (x̄ + 5.84)/50

+0.3− 0.5
[
1− (x̄/3.75)2 − (ȳ/5)2

]1/2
if s(x̄, ȳ) ≤ 1,

where all the quantities are in meters. Details concerning the experiments can be found
in [43].

Simulation was performed with ∆t = T/40 s, ∆x = Lm/40 m, and ∆y = W/80 m for
35 wave periods. Here, Lm = 1.2 m is approximately the mean wavelength within the
domain and W = 20 m is the basin width. Three different resolutions attempted for ∆t,
∆x, and ∆y revealed that the results differed insubstantially. Wave heights were computed
from the maxima and minima determined during the last three periods of simulation at the
locations corresponding to the measurement stations.

Figure 11 shows the bottom topography of the basin and a perspective view of the
wave field at the end of 35 periods of simulation. Converged and diverged wave patterns
and cnoidal wave forms in shallower regions near the end of basin are striking aspects of
the wave field. Experimental measurements were performed for eight sections; three of
these were lengthwise along the x-direction, while the remaining five were crosswise in the
y-direction. Figure 12 shows the longitudinal, 1–3, and transverse 4–8 sections. Although
some discrepancies exist, the overall performance of the wave model is quite acceptable for
this challenging test case with complex bathymetry.
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Figure 10. Variations of normalized harmonic amplitudes along the centerline for incident waves
of T = 1 s (top), T = 2 s (middle), and T = 3 s (bottom). Measurements (scatter) and computations
(solid line).

Figure 11. Basin bathymetry and simulated view of fully developed wave field for experiment in
Berkhoff, Buoy, and Radder [43]. Axes are omitted due to different vertical scales for bathymetry and
wave field.
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Figure 12. Lengthwise (sections 1–2) and crosswise (sections 4–8) wave height variations for exper-
iments in Berkhoff, Buoy, and Radder [43]. Experimental measurements (scatter) and numerical
simulations (solid line).

5. Concluding Remarks

A completely new arrangement of Boussinesq-type wave equations is presented to
achieve numerically more accurate and robust computations. Simultaneous employment
of three different velocity variables allows the use of continuity and momentum equations
in the simplest forms as well as providing improved dispersion characteristics to the wave
model. Furthermore, separate treatment of kinematic equations connecting the different
velocity variables makes it possible to retain all the terms involving water depth variations
in time and space, thus endowing the wave model with capabilities to accurately generate
and propagate waves due to sea-quakes as well. A useful theoretical extension would
be to recast these equations into a curvilinear coordinate system, as in [44], for practical
applications in irregular domains.
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From the numerical point of view, the continuity and momentum equations of the
proposed set, each composed of the least number of terms possible, contain only the first-
order derivatives in time and space, thus minimizing the discretization errors in addition
to resulting in explicit formulations. Only the intermediate velocity variable, the velocity
at an arbitrary depth, is computed via an implicit formulation. However, this part of the
computations alone is sufficient to make the entire scheme implicit, thus enabling the use of
relatively larger spatial and time steps. With an overall decoupled system of computations,
the computational efficiency of the entire scheme is maximized without incurring any
penalties on the accuracy of results. This point is tested in different simulations capturing
various aspects of wave transformations which reveal the reliability of the proposed wave
model and numerical scheme. Nevertheless, it is always possible to produce different
numerical schemes with higher accuracy at the cost of some more computational effort.
Possible future works in this direction may result in even more satisfactory numerical
solutions of the proposed equations.
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